por idacil » Sáb Fev 26, 2011 17:48
Um plano é determinado pelos pontos M, N e P, do cubo representado na figura abaixo, que são pontos médios das arestas GF, AH e BC, respectivamente.

a) Determine a secção desse plano com o cubo.
b) Considere que a medida da aresta do cubo seja a .
Calcule a área dessa secção em função de a .
c) Encontre três pontos (sobre as arestas do cubo) que
determinam um plano que seccione o cubo, em um trapézio
isósceles.
RESPOSTAS:
A)

B)
A/2...???????
C)

?????????????????????????
2) Um sólido de revolução, obtido pela rotação de uma figura F ao redor de um eixo e , resulta em um cone circular reto e um cilindro circular reto, como na ilustração.

a) Determine a posição do eixo na figura ao lado e a área de F em função do raio R, sabendo que as geratrizes do cone e do cilindro medem o triplo de R.
b) Determine o valor de R de modo que a secção por um plano que contenha o eixo e tenha área igual a 12 cm2.
RESPOSTAS:
A) se a região é um triangulo retangulo com base no eixo x e 2 verteces nos ponto (a,0) e (b,0) com angulo reto, então o eixo é vertical.
Area total =

* r (g+r)
Area total = 3,14 * r(3r+r)
Area total = 3,14 * 5r
Area total = 15,70r
b) 12 = 15,70r
12 = r
15,70
r = 0,76
Por favor, me ajudem.
-
idacil
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sex Fev 04, 2011 14:49
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por Abelardo » Seg Mar 07, 2011 01:58
Sabendo que o triângulo seccionado é equilátero, precisamos determinar o valor de qualquer lado e depois usar a fórmula da área de um triângulo equilátero.
Chamando de x um lado desse triângulo, temos:

( observe que para determinar o lado NP, ele é a hipotenusa de um triângulo com catetos NA e PA. Logo, nessa equação, procuramos o valor de PA... consegue ver esse triângulo)!
... ..
... ..
... ..
![x=\frac{a \sqrt[] {5}}{4} x=\frac{a \sqrt[] {5}}{4}](/latexrender/pictures/504e470ba67aaee0a941546492a7c0b4.png)
Calculemos agora o valor de NP, temos o valor de NA=

e PA=
![x=\frac{a \sqrt[] {5}}{4} x=\frac{a \sqrt[] {5}}{4}](/latexrender/pictures/504e470ba67aaee0a941546492a7c0b4.png)

.......
.......
.......
.......
NP=

.
Sabendo que a área de um triângulo equilátero é

.
Como temos o valor de um lado, NP.. é só substituir e encontramos no final :
![\frac{9{a}^{2}\sqrt[]{3}}{64} \frac{9{a}^{2}\sqrt[]{3}}{64}](/latexrender/pictures/4d3addd37603cdcacaeee3460349dbd9.png)
. Tá ai a letra B.
-

Abelardo
- Colaborador Voluntário

-
- Mensagens: 159
- Registrado em: Qui Mar 03, 2011 01:45
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Geometria Plana/Espacial
por Emilia » Ter Fev 22, 2011 15:33
- 0 Respostas
- 2096 Exibições
- Última mensagem por Emilia

Ter Fev 22, 2011 15:33
Geometria Plana
-
- GEOMETRIA METRICA E ESPACIAL,TRIGONOMETRIA PLANA
por solcruz » Sáb Mar 05, 2011 20:54
- 1 Respostas
- 3353 Exibições
- Última mensagem por Abner

Dom Mar 13, 2011 11:35
Trigonometria
-
- geometria espacial
por Gir » Seg Jul 27, 2009 11:46
- 3 Respostas
- 11570 Exibições
- Última mensagem por Molina

Ter Jul 28, 2009 15:21
Problemas do Cotidiano
-
- Geometria espacial
por nathy vieira » Qua Out 07, 2009 22:37
- 2 Respostas
- 2708 Exibições
- Última mensagem por nathy vieira

Qua Out 07, 2009 23:03
Geometria Espacial
-
- geometria espacial
por nathy vieira » Qua Out 07, 2009 23:18
- 4 Respostas
- 5907 Exibições
- Última mensagem por nathy vieira

Qui Out 08, 2009 18:37
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.