• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equações com exponenciais

equações com exponenciais

Mensagempor Regina » Sex Fev 25, 2011 14:52

ola a todos!!

a minha dúvida é a seguinte:

No livro diz:

Resolva a equação 2{t}^{3}{e}^{-t}={t}^{3}{e}^{-0,6t}

E eu comecei a resolver da seguinte maneira:
\frac{2{t}^{3}}{{t}^{3}}=\frac{{e}^{-0,6t}}{{e}^{-t}}\Leftrightarrow
2=\frac{{e}^{-0,6t}}{{e}^{-t}}\Leftrightarrow
2{e}^{-t}={e}^{-0,6t}\Leftrightarrow

e daqui já não consigo passar!
sei que o resultado tem que ser t=0 V t=\frac{5}{2}ln2

Mas não consigo chegar ao resultado correcto, dão sempre valores diferentes.
Regina
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Fev 25, 2011 14:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em química
Andamento: cursando

Re: equações com exponenciais

Mensagempor Molina » Sex Fev 25, 2011 15:26

Boa tarde, Regina.

Continuando de onde você parou:

2=\frac{{e}^{-0,6t}}{{e}^{-t}}

2={e}^{-0,6t}*{e}^{t}

2={e}^{-0,6t+t}

2={e}^{0,4t}

ln 2=ln {e}^{0,4t}

ln 2=0,4t

t=\frac{ln 2}{0,4}=\frac{5}{2}ln 2


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: equações com exponenciais

Mensagempor Regina » Sex Fev 25, 2011 18:46

Percebi todo o seu raciocínio, no entanto só não compreendo como você passou de 2=\frac{{e}^{-0,6t}}{{e}^{-t}} para 2={e}^{-0,6t} * {e}^{t}

Como ficam os dois "e" a multiplicar um pelo outro, e o expoente do segundo "e" passa de "-t" para "t"?

Obrigado
Regina
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Fev 25, 2011 14:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em química
Andamento: cursando

Re: equações com exponenciais

Mensagempor Molina » Sex Fev 25, 2011 19:27

Regina escreveu:Percebi todo o seu raciocínio, no entanto só não compreendo como você passou de 2=\frac{{e}^{-0,6t}}{{e}^{-t}} para 2={e}^{-0,6t} * {e}^{t}

Como ficam os dois "e" a multiplicar um pelo outro, e o expoente do segundo "e" passa de "-t" para "t"?

Obrigado

Boa tarde.

Esta é uma parte de matemática básica que se a gente acaba não praticando cai no esquecimento mesmo. Mas tente se lembrar que:

a^{-1}=\frac{1}{a}

Ou seja, para mudar o sinal do expoente basta inverter a fração. Outros exemplos:

\frac{b^{-3}}{2}=\frac{2}{b^{3}}

\frac{1}{{e}^{-t}}={e}^{t}

O que temos no seu problema é:

2=\frac{{e}^{-0,6t}}{{e}^{-t}}

Mas para você perceber melhor o que eu fiz vou escrever assim:

2={e}^{-0,6t}*\frac{1}{{e}^{-t}}

Que é a mesma coisa. Agora vou aplicar nesta ultima fração a propriedade que vimos acima:

2={e}^{-0,6t}*\frac{1}{{e}^{-t}}={e}^{-0,6t}*{e}^{t}


Ficou mais claro agora? :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: equações com exponenciais

Mensagempor Regina » Sex Fev 25, 2011 19:39

Sim, já estou a ver melhor. É que por vezes é dificil conseguir visualizar o raciocínio, mas bate tudo certo.

Muito Obrigada
Regina
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Fev 25, 2011 14:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em química
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?