• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral do e.

Integral do e.

Mensagempor Higor » Ter Fev 22, 2011 12:11

Galera bom dia.

a integral :

\int_{}^{} e = é o proprio e mesmo né

agora

\int_{}^{} e^2^x

fica o e elevado a 2x mesmo ??
Higor
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Fev 20, 2011 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: Integral do e.

Mensagempor LuizAquino » Ter Fev 22, 2011 12:26

Higor escreveu:a integral :

\int e = é o proprio e mesmo né

agora

\int e^{2x}

fica o e elevado a 2x mesmo ??


Primeiro, vamos escrever com a notação adequada:
\int e^x \, dx= e^x + c

Agora, você quer calcular:
\int e^{2x} \, dx

É muito simples. Basta usar a técnica de substituição. Fazendo u=2x, temos que du=2 dx. Portanto, temos que:
\int e^{2x} \, dx = \frac{1}{2}\int e^u\, du

Agora, fica como exercício para você terminar o cálculo. Poste aqui a sua solução.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Integral do e.

Mensagempor Higor » Ter Fev 22, 2011 12:54

No caso a integral de \int_{}^{} e^x dx = e^x

assim ficara \frac{1}{2}\ e^2^x

por fim

\frac{e^2^x}{2} + C
Higor
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Fev 20, 2011 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59