Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por Taah » Ter Mar 30, 2010 09:02
Calcule sin(x+y) em função de a e b, sabendo que o produto ab 0, que sinx + siny = a e que cosx + cosy = b
sen(x+y) = ?
Sabe-se que:
senx + senx = 2.sen[(x+y)]/2.cos[(x-y)]/2
cosx + cosy = 2.cos[(x+y)]/2.cos[(x-y)]/2
Dessa forma:
Sabendo que:
*
senx + seny =
a*
cosx + cosy =
ba = senx + senx = 2.sen[(x+y)/2].cos[(x-y)/2] ----->a = 2.sen[(x+y)/2].cos[(x-y)/2]
b = cosx + cosy = 2.cos[(x+y)/2].cos[(x-y)/2]------>b = 2.cos[(x+y)/2].cos[(x-y)/2]
Se o produto
ab é diferente de zero, deduzimos que -----> a

0
b

0
Então podemos dividir
a = 2.sen[(x+y)/2].cos[(x-y)/2] por
b = 2.cos[(x+y)/2].cos[(x-y)/2] Temos:
a = 2.sen[(x+y)/2].cos[(x-y)/2]/b = 2.cos[(x+y)/2].cos[(x-y)/2]
a/b = 2.sen[(x+y)/2].cos[(x-y)/2]/2.cos[(x+y)/2].cos[(x-y)/2]
a/b = sen[(x+y)/2]/cos[(x+y)/2]
Sabemos também que senx/cosx = tg
Portanto,
sen[(x+y)/2]/cos[(x+y)/2] = a/b -----> tg[(x+y)/2] = a/b
Por outro lado, sabe-se que:
sen

=[ 2.tg

/2]/[1 + tg²

/2] (**)
Faça

= x+y em (**)
sen(x+y) = 2.tg[(x+y)/2]/1 + tg²[(x+y)/2]
sen(x+y) = 2.[a/b]/1 + [(a/b)²]
sen(x+y) = 2. [a/b]/1 + a²/b²
sen(x+y) = 2. [a/b]/[b² + a²/b²]
sen(x+y) = [2a/b]/[b² + a²/b²]
Divisão de frações, multiplica a primeira pelo inverso da segunda:
sen(x+y) = [2a/b].[b²/a²+b²]
sen(x+y) = 2ab/a² + b²
RESPOSTA: 2ab/a² + b²
-
Taah
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sáb Mar 27, 2010 15:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências Exatas
- Andamento: cursando
por paulo87 » Sáb Fev 19, 2011 12:26
velho, so uma dica, procura sobre Prostaféreses.
-
paulo87
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Fev 19, 2011 12:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Desafios Difíceis
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Alguém poderia me ensinar um método fácil para resolver isso
por Dankaerte » Qui Ago 27, 2009 14:38
- 2 Respostas
- 2909 Exibições
- Última mensagem por Elcioschin

Qui Ago 27, 2009 20:04
Estatística
-
- PARECE FÁCIL - Cálculo de sin(x+y)
por Taah » Dom Mar 28, 2010 13:39
- 6 Respostas
- 4451 Exibições
- Última mensagem por Taah

Seg Mar 29, 2010 16:36
Desafios Difíceis
-
- Existe alguma maneira de equacionar os problemas !
por LuizCarlos » Ter Ago 16, 2011 15:34
- 2 Respostas
- 2397 Exibições
- Última mensagem por DanielFerreira

Dom Abr 01, 2012 17:09
Álgebra Elementar
-
- Maneira mais eficiente para multiplicacao de fracoes algeb.
por lucas7 » Dom Fev 20, 2011 07:54
- 7 Respostas
- 3890 Exibições
- Última mensagem por lucas7

Seg Fev 21, 2011 16:38
Álgebra Elementar
-
- [Limite] Gostaria de saber se posso operar dessa maneira.
por ravi » Ter Out 09, 2012 10:50
- 5 Respostas
- 3839 Exibições
- Última mensagem por LuizAquino

Qui Out 11, 2012 23:37
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.