• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão prova magisterio 2007

Questão prova magisterio 2007

Mensagempor fernandocez » Seg Fev 14, 2011 17:21

Oi pessoal, mais uma que eu não consigo resolver. Essa é do concurso para magistério 2007. Eu fiz licenciatura em matemática mas acho que sou muito fraco. Preciso estudar muito pra passar no concurso.

O segmento AB é uma corda de uma circunferência de centro O. Prolongando AB de um comprimento BC igual ao raio da circunferência, verifica-se que o ângulo BCO mede 24º. Então, o ângulo AOC mede:

Eu fiz o seguinte: fiz um circulo, tracei a corda AB fiz o prolongamento BC igual ao raio. Tracei do centro O até ponto A e tracei até o ponto C. Apareceu um triangulo AOC. Nesse triangulo tem um ângulo de 24º em C e mais dois x+y=156, x+y+24=180º, ok? Agora eu não consigo continuar. Agradeço quem puder ajudar.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Questão prova magisterio 2007

Mensagempor LuizAquino » Seg Fev 14, 2011 19:57

A figura abaixo ilustra o exercício.
circunferencia.png
circunferencia.png (35.58 KiB) Exibido 1415 vezes


Note que os triângulos AOB e OBC são isósceles. Além disso, temos que A\hat{B}O é um ângulo externo do triângulo OBC. Sendo assim, B\hat{O}C \equiv B\hat{C}O e ambos medem 24°; O\hat{A}B \equiv O\hat{B}A e ambos medem 48°.

Do triângulo AOC temos que (x+24°)+48º+24°=180°, de onde obtemos que x=84°. Portanto, o ângulo AÔC mede 108°.


fernandocez escreveu:Preciso estudar muito pra passar no concurso.

Para revisar os conteúdos do ensino fundamental e médio, indico para você os vídeos do Nerckie no YouTube:
http://www.youtube.com/nerckie
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}