por jose henrique » Sáb Fev 12, 2011 20:35
estou com uma questão que pede para provar que os números abaixos são irracionais.
![\sqrt[2]{2}+\sqrt[2]{3} \sqrt[2]{2}+\sqrt[2]{3}](/latexrender/pictures/621a970d954c080622ed136b68d1432b.png)
fiz de forma
![\sqrt[]{2}+\sqrt[]{3}= \sqrt[]{3+2}= \sqrt[]{5} \sqrt[]{2}+\sqrt[]{3}= \sqrt[]{3+2}= \sqrt[]{5}](/latexrender/pictures/91d9f158df3cdc029ab91b76399ee011.png)
![\sqrt[]{5}=\frac{a}{b} \Rightarrow {\left(\sqrt[]{5} \right)}^{2}= {\left(\frac{a}{b} \right)}^{2} \Rightarrow 5 = \frac{{a}^{2}}{{b}^{2}}\Rightarrow5{b}^{2}={a}^{2} \sqrt[]{5}=\frac{a}{b} \Rightarrow {\left(\sqrt[]{5} \right)}^{2}= {\left(\frac{a}{b} \right)}^{2} \Rightarrow 5 = \frac{{a}^{2}}{{b}^{2}}\Rightarrow5{b}^{2}={a}^{2}](/latexrender/pictures/9dfa21f7c9a4b6c0c4fd0f502b0dbd99.png)
bem então se b é um número natural múltiplo de 5 então a deverá ser míltiplo de 5.
até aí o meu racíocinio está correto.
obrigado pela ajuda
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
por Dan » Sáb Fev 12, 2011 21:07
jose henrique, em primeiro lugar
não é ![\sqrt[]{2+3} \sqrt[]{2+3}](/latexrender/pictures/e3cfe0476210e78ca6c5eaf3c150b6f0.png)
, muito menos
![\sqrt[]{5} \sqrt[]{5}](/latexrender/pictures/0be1c4ad0f7708e4012e708b953ffd6c.png)
. Você não pode sair somando raízes quadradas dessa forma, pois é como somar duas variáveis diferentes (x + y).
A ideia desse tipo de demonstração que você começou é da prova por absurdo. Você começa dizendo que uma raíz quadrada é igual a uma fração (o que já é um absurdo, já que essas raízes quadradas são irracionais) para no final constatar que se você seguir com esse processo algébrico obterá (daí sim) "o" absurdo (uma fração que pode ser simplificada para sempre, por exemplo).
Entendeu?
-

Dan
- Colaborador Voluntário

-
- Mensagens: 101
- Registrado em: Seg Set 14, 2009 09:44
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por jose henrique » Sáb Fev 12, 2011 21:18
então eu terei que fazer este procedimento para cada raiz em questão, para depois que comprovadas que são números irracionais eu concluir que somando dois números irracionais o resultado será outro irracional.
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
por jose henrique » Sáb Fev 12, 2011 21:27
por exemplo nesta questão que pede Se i é um número irracional e n é um número inteiro então i + n é um número irracional.

sendo que n

0
o que provaria, pois como i é irracional não poderia ser igualado a um racional e desta forma i + n seria racional
está correto?
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
por Dan » Sáb Fev 12, 2011 21:31
Aí que mora o perigo. Não é correto afirmar que a soma de dois números irracionais é sempre irracional. No caso inicial será irracional, mas por exemplo,
![2 + \sqrt[]{2} 2 + \sqrt[]{2}](/latexrender/pictures/b949a09f0189582fd83e869b23343820.png)
e
![2 - \sqrt[]{2} 2 - \sqrt[]{2}](/latexrender/pictures/a125e0f784dea4fe3f49ff54aeac347c.png)
são dois números irracionais que quando somados dão 4. Então não dá pra generalizar.
Eu estou aqui pensando, e não consegui chegar a nenhuma estratégia. Provar que as raízes separadamente são irracionais é fácil, mas que argumento você vai usar no final para dizer que são irracionais?
-

Dan
- Colaborador Voluntário

-
- Mensagens: 101
- Registrado em: Seg Set 14, 2009 09:44
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Dan » Sáb Fev 12, 2011 21:39
Tudo bem, um inteiro somado com um irracional é irracional. Parece que você não concluiu essa outra demonstração, mas a afirmação está correta. Porém, isso ainda não resolve o problema da soma de dois irracionais.
-

Dan
- Colaborador Voluntário

-
- Mensagens: 101
- Registrado em: Seg Set 14, 2009 09:44
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Números Irracionais] Soma de irracionais dando um racional
por rnts » Seg Mai 21, 2012 16:15
- 1 Respostas
- 1587 Exibições
- Última mensagem por Guill

Sáb Mai 26, 2012 16:07
Álgebra Elementar
-
- Números irracionais
por cristina » Qua Set 16, 2009 23:40
- 1 Respostas
- 1853 Exibições
- Última mensagem por Marcampucio

Qui Set 17, 2009 00:18
Álgebra Elementar
-
- Números irracionais
por Marcia » Seg Nov 15, 2010 19:41
- 1 Respostas
- 1578 Exibições
- Última mensagem por Rogerio Murcila

Ter Nov 16, 2010 10:22
Álgebra Elementar
-
- Números irracionais
por lacesar » Dom Abr 12, 2015 16:52
- 1 Respostas
- 2033 Exibições
- Última mensagem por adauto martins

Ter Mai 08, 2018 18:41
Cálculo: Limites, Derivadas e Integrais
-
- Números irracionais
por lacesar » Dom Abr 12, 2015 16:59
- 1 Respostas
- 1063 Exibições
- Última mensagem por adauto martins

Sáb Abr 18, 2015 12:06
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.