• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinar funções

Determinar funções

Mensagempor helenasilva » Qua Jan 26, 2011 07:50

é o seguinte tenho algumas dúvidas quanto a alguns exercicios que ja os tentei resolver..
h(x)=(x^2-1)/(x^2-9) determina:
os valores de x para os quais h(x)?0;
no exercico anterior comecei por determinar os zeros mas ainda não sei se é assim que se faz agradecia resposta rapida pois é mesmo UEGENTE.
Editado pela última vez por helenasilva em Qua Jan 26, 2011 18:07, em um total de 1 vez.
helenasilva
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Jan 24, 2011 17:57
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: Determinar funções

Mensagempor Molina » Qua Jan 26, 2011 15:24

Boa tarde.

Escrava o exercício correto. Coloque como está o enunciado. Não faz sentido algumas coisas que você falou, parece que está fora de ordem.
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.