• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equações literais do 2°grau

equações literais do 2°grau

Mensagempor stanley tiago » Dom Jan 23, 2011 12:19

resolva esta equaçãe sujeitas a parâmetros , supostas possíveis em função dos seus coenficientes


A) \frac{x^2}{ab}-\frac{x}{b}=\frac{2a-2x}{a}


bom , a minha duvida é como encontrar a outra raiz dessa equaçao ,
já q tem tudas possíveis raizes pra esta equação !
eu vou postar como eu encontrei uma .


B) x^2-a \sqrt[]{2x}-\frac{3}{2} a^2=0


essa eu nem consegui encontrar nenhuma raiz .
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: equações literais do 2°grau

Mensagempor stanley tiago » Dom Jan 23, 2011 13:06

A) \frac{x^2-ax}{ab}=\frac{2ab-2bx}{ab}

x^2-ax=2ab-2bx

x(x-a)=-2b(-a+x)

x=\frac{-2b(x-a)}{(x-a)}

x=-2b

Agora falta encontra a outra raiz q é {a} e eu nao sei como faz pra encontra-la?

B)x^2-a \sqrt[]{2x}-\frac{3}{2} a^2=0

a=1 ;    b= -a\sqrt[]{2x}      ;     c= -\frac{3}{2}a^2

\Delta={b}^{2}-4ac

\Delta=\left(-a\sqrt[]{2x} \right)^2-4.1.\frac{-3}{2}a^2

\Delta=2a^2x+6a^2

\Delta=\sqrt[]{2a^2x+6a^2}

\Delta=a^2\sqrt[]{2x+6}

x=\frac{-b+-\sqrt[]{\Delta}}{2a} \rightarrow x^1=\frac{a\sqrt[]{2x}+a^2\sqrt[]{2x+6}}{2} \rightarrow x^2=\frac{a\sqrt[]{2x}-(a^2\sqrt[]{2x+6})}{2}


foi o q eu consegui fazer mais a resposta nao é essa .
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: equações literais do 2°grau

Mensagempor Molina » Dom Jan 23, 2011 13:43

Boa tarde, Stanley.

Em relação a questão A) basta você mudar os termos na parte que coloca em evidência em ambos os lados, veja:

x^2-ax=2ab-2bx

x^2+2bx=2ab+ax

x(x+2b)=a(2b+x)

x=\frac{a(2b+x)}{(x+2b)}

x=a

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: equações literais do 2°grau

Mensagempor stanley tiago » Dom Jan 23, 2011 16:25

entendi obrigado .

e enquanto a alternativa B) , como q fica ?
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: equações literais do 2°grau

Mensagempor Molina » Dom Jan 23, 2011 17:22

stanley tiago escreveu:entendi obrigado .

e enquanto a alternativa B) , como q fica ?

Boa tarde,

Você cometeu um erro fazendo b=-a\sqrt{2x}:
stanley tiago escreveu:
B)x^2-a \sqrt[]{2x}-\frac{3}{2} a^2=0

a=1 ;    b= -a\sqrt[]{2x}      ;     c= -\frac{3}{2}a^2


O coeficiente não deveria ter o x. Logo, o correto seria:

B)x^2-a \sqrt[]{2x}-\frac{3}{2} a^2=0

a=1 ;    b= -a\sqrt[]{2}      ;     c= -\frac{3}{2}a^2

Verifica se agora dá certo.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: equações literais do 2°grau

Mensagempor stanley tiago » Dom Jan 23, 2011 17:24

ah entendi , obrigado :-D
até mais
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: