• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada de Logaritmo

Derivada de Logaritmo

Mensagempor Moura » Qua Jan 19, 2011 23:02

Determine a derivada de y em relação a x:

y=ln.\sqrt[]{\frac{(x+1)^5}{(x+2)^{20}}}

Resp.: \frac{-(15x+10)}{2(x+2)(x+1)}

Desde já agradeço a ajuda. :y:
P = NP
Moura
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Dez 13, 2010 11:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Derivada de Logaritmo

Mensagempor Elcioschin » Qui Jan 20, 2011 11:29

V[(x + 1)^5] = (x + 1)^(5/2)

V[1/(x + 2)^20) = V[(x + 2)^-20] = (x + 2)^(-10)

y = ln[(x + 1)^(5/2)*(x + 2)^(-10)]

Lembre-se que:

a) Dx ln|u| = (1/u) Dx u
b) Dx (A*B) = B*Dx A + A*Dx B

u = [(x + 1)^(5/2)*(x + 2)^(-10)] ----> 1/u = (x + 2)^10/(x + 1)^(5/2)

Dx u = [(x + 2)^(-10)]*[(5/2)*(x + 1)^3/2] + [(x + 1)^(5/2)]*[-10*(x + 2)^(-11)]

Dx u = [5*(x + 1)^(3/2)]/[2*(x + 2)^10] - [10*(x + 1)^(5/2)]/[(x + 2)^11]

MMC = 2*(x + 2)^11

Dx u = {[5*(x + 1)^(3/2)]*(x + 2) - 20*(x + 1)^(5/2)}/2*(x + 2)^11

Colocando (x + 1)^(3/2) em evidência no numerador:

Dx u = [(x + 1)^(3/2)]*[5*(x + 2] - 20*(x + 1)]/2*(x + 2)^11

Dx u = [(x + 1)^(3/2)]*(- 15x - 10)/2*(x + 2)^11

Dx y = (1/u)*Dx u


Dx y = [(x + 2)^10/(x + 1)^(5/2)]* [(x + 1)^(3/2)]*(- 15x - 10)/2*(x + 2)^11


Dx y = - (15x + 10)/2*(x + 2)*(x + 1)

Ufa
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Derivada de Logaritmo

Mensagempor Moura » Qui Jan 20, 2011 21:00

\sqrt[]{[(x+1)^5]}=(x+1)^{5/2}

\sqrt[]{[\frac{1}{(x+2)^{20}}]}=\sqrt[]{[(x+2)^{-20}]}=(x+2)^{-10}

y=ln[(x+1)^{5/2}*(x+2)^{-10}

a) Dx ln|u|=\frac{1}{u}*Dxu

b) Dx (A*B)=B*DxA+A*DxB

u=[(x+1)^{5/2}*(x+2)^{-10}] \rightarrow\frac{1}{u}=\frac{(x+2)^{10}}{(x+1)^{5/2}}

Dxu=[(x+2)^{-10}]*[(\frac{5}{2}(x+1)^{3/2}]+[(x+1)^{5/2}]*[-10(x+2)^{-11}]

Dxu=\frac{[5(x+1)^{3/2}]}{[2(x+2)^{10}]}-\frac{[10(x+1)^{5/2}]}{[(x+2)^{11}]}

MMC=2(x+2)^{11}

Dxu={[5(x+1)^{3/2}]*(x+2)-\frac{20(x+1)^{5/2}}{2(x+2)^{11}}

Colocando (x+1)^{3/2} em evidência no numerador:

Dxu=[(x+1)^{3/2}]*\frac{[5(x+20)-20(x+1)]}{2(x+2)^{11}}

Dxu=[(x+1)^{3/2}]*\frac{(-15x-10)}{2(x+2)^{11}}

Dxy=\frac{1}{u}*Dxu

Dxy=[\frac{(x+2)^{10}}{(x+1)^{5/2}}]*[(x+1)^{3/2}]*\frac{(-15x-10)}{2(x+2)^{11}}

Dxy=-\frac{(15+10)}{(x+2)(x+1)}
P = NP
Moura
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Dez 13, 2010 11:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Derivada de Logaritmo

Mensagempor Elcioschin » Qui Jan 20, 2011 21:57

Moura

Agradeço pelo Latex.
A apresentação ficou muito melhor.

Elcio
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59