por ARCS » Qua Jan 19, 2011 18:28
Como obter

colocando algum termo de
![f'(x) = {x}^{1/3}[\frac{-1}{3}{(x^3+1)}^{-4/3}(3x^2)] + [ \frac{1}{3}{x}^{-2/3}]{(x^3+1)}^{-1/3} f'(x) = {x}^{1/3}[\frac{-1}{3}{(x^3+1)}^{-4/3}(3x^2)] + [ \frac{1}{3}{x}^{-2/3}]{(x^3+1)}^{-1/3}](/latexrender/pictures/6f26960fc090bf7c8da9379408b8d4b4.png)
em evidência.
-
ARCS
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Qui Out 28, 2010 18:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por Elcioschin » Qua Jan 19, 2011 21:54
Mostre o problema completo
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equações Exponciaias com o uso do artifício
por Belle R » Sex Abr 12, 2013 18:23
- 8 Respostas
- 3106 Exibições
- Última mensagem por Belle R

Sex Abr 19, 2013 14:11
Equações
-
- Matemático
por admin » Sáb Jul 21, 2007 01:09
- 1 Respostas
- 2389 Exibições
- Última mensagem por jose reis pimenta

Seg Nov 12, 2007 22:19
Desafios Médios
-
- Poema Matemático
por Molina » Sáb Mai 23, 2009 14:47
- 7 Respostas
- 7722 Exibições
- Última mensagem por Elcioschin

Seg Mai 03, 2010 18:37
Mensagens Matemáticas
-
- Problema Matemático
por honorio » Dom Set 06, 2009 20:06
- 10 Respostas
- 7403 Exibições
- Última mensagem por honorio

Dom Set 20, 2009 17:25
Funções
-
- Absurdo Matemático
por PedroSantos » Sáb Jan 15, 2011 19:18
- 2 Respostas
- 1828 Exibições
- Última mensagem por PedroSantos

Dom Jan 16, 2011 19:42
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 14 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.