• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equações

Equações

Mensagempor douglasjro » Qui Jan 13, 2011 12:20

(UFG) - Para que a soma das raízes da equação (k-2)x^2-3kx+1=0 seja igual ao seu produto devemos ter?
Resposta:k=\frac{1}{3}
Obriagdo.
Douglas Oliveira
douglasjro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Seg Jan 10, 2011 18:59
Formação Escolar: ENSINO MÉDIO
Área/Curso: Processos Gerenciais
Andamento: cursando

Re: Equações

Mensagempor VtinxD » Qui Jan 13, 2011 14:45

Assim como no seu outro post ,esse exercicio é uma questão que envolve as relações de soma e produto da equação do segundo grau,onde:
a+b=-\frac{-3k}{k-2} e a.b =\frac{1}{k-2}.Sua forma mais geral seria:
Para toda equação da forma a{x}^{2}+bx+c=0 ,vale as relações {r}_{1}+{r}_{2}=-\frac{b}{a} e {r}_{1}.{r}_{2}=\frac{c}{a} se e somente se {r}_{1} e {r}_{2} são raizes da equação.
Estas relações fazem parte das relações de Girard.
Espero ter ajudado.
VtinxD
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Dom Ago 15, 2010 18:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Matematica
Andamento: cursando

Re: Equações

Mensagempor douglasjro » Sex Jan 14, 2011 13:27

Muito obrigado consegui resolver. :y:
Douglas Oliveira
douglasjro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Seg Jan 10, 2011 18:59
Formação Escolar: ENSINO MÉDIO
Área/Curso: Processos Gerenciais
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.