• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(UFSM-RS) Matriz singular

(UFSM-RS) Matriz singular

Mensagempor billhc » Qua Jan 05, 2011 15:24

Não consegui entender como se resolve esse exercício...

Uma matriz é singular quando não admite inversa. Então A=\begin{pmatrix}
   X & 1  \\ 
   2 & 4 
\end{pmatrix} é singular, se x valer:

a) -1/2
b) 2
c) 1
d) 1/2
e) 0

Desde já orbigado!
billhc
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Dez 22, 2009 16:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando

Re: (UFSM-RS) Matriz singular

Mensagempor vitall » Qua Jan 05, 2011 17:25

a respota é: e-)0

se x é igual a zero a determinante é zero e a matriz passa a aceitar infinitas respostas para AI=A^-1(se não aceitasse nenhuma resposta ela tambem seria singular)
vitall
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Jan 04, 2011 02:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: (UFSM-RS) Matriz singular

Mensagempor MarceloFantini » Qua Jan 05, 2011 18:11

Errado vitall, se x for zero o determinante é -2 e portanto a matriz tem inversa. Para que o determinante seja zero: 4x -2 = 0 \therefore x = \frac{1}{2}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: (UFSM-RS) Matriz singular

Mensagempor vitall » Qua Jan 05, 2011 22:38

Fantini escreveu:Errado vitall, se x for zero o determinante é -2 e portanto a matriz tem inversa. Para que o determinante seja zero: 4x -2 = 0 \therefore x = \frac{1}{2}.

ele tem razão, erro basico, devem ser as ferias
vitall
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Jan 04, 2011 02:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: (UFSM-RS) Matriz singular

Mensagempor billhc » Qui Jan 06, 2011 12:50

Obrigado pessoal!
billhc
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Dez 22, 2009 16:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.