• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Encontrar Ponto A pela função ArcTangente

Encontrar Ponto A pela função ArcTangente

Mensagempor nerabil » Seg Jan 03, 2011 21:03

Olá Mestres, um abençoado 2011 a todos!

Tenho o seguinte problema:
Preciso encontrar o ângulo \theta ou o ângulo \alpha, para aplicar a função ArcTangente e obter o ponto A(x,y) pelos senos e cossenos...
Dados os pontos C e B, e o cateto b desejo obter o ponto A de modo que obtenha um triângulo retângulo.
o Ponto D obtenho facilmente pelos seno e cosseno dos ângulos obtidos pela função ArcTangente dos pontos C e B.
A distância do cateto "b" sempre será igual (valor fixo), mas a hipotenusa "a" é variável, bem como os pontos B e C tornando meu angulo \alpha sempre variável.

desde já agradeço...
Anexos
Triângulo ArcTan.png
Triângulo ArcTan.png (5.05 KiB) Exibido 2535 vezes
nerabil
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Jan 03, 2011 12:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnólogo Processamento de dados
Andamento: formado

Re: Encontrar Ponto A pela função ArcTangente

Mensagempor MarceloFantini » Ter Jan 04, 2011 10:52

Bom, basta pegar traçar uma reta que passa por C e que seja tangente a circunferência de centro em B e raio b. O triângulo formado será sempre retângulo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Encontrar Ponto A pela função ArcTangente

Mensagempor nerabil » Ter Jan 11, 2011 03:50

ok, como chego no ângulo theta ou \alpha, ou ainda como chego no ponto A(x,y), seja apartir da equação da circunferência ou outro meio?
Terei que programar essa função para descobrir o A(x,y). Imagino que terei que fazer iterações com cada um dos pontos da circunferência testando se a reta CA é tangênte à circunferência.
É esta minha questão, não vou traçar uma reta manualmente para tangenciar a circunferência, preciso dos meios para achar ponto A(x,y) ou ainda o ângulo theta ou \alpha.
nerabil
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Jan 03, 2011 12:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnólogo Processamento de dados
Andamento: formado

Re: Encontrar Ponto A pela função ArcTangente

Mensagempor MarceloFantini » Ter Jan 11, 2011 11:42

Provavelmente não vai ajudar, mas \theta = 180^{\arc} - \alpha. E sim, não sei muito de programação mas testar se a reta CA é tangente deve ser um meio, só que talvez isso mude o problema pra quantidade de memória.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Encontrar Ponto A pela função ArcTangente

Mensagempor Renato_RJ » Ter Jan 11, 2011 15:47

Tira uma dúvida, o ponto D está na mesma reta que os pontos B e C ?? Se sim, já pensou em prolongar a reta AC até um ponto E perpendicular ao ponto D e, com isso, você teria dois triângulos semelhantes, o triângulo DEC e o triângulo BAC, logo o ângulo alfa sairia por semelhança.

Grato,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}