• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema-Casal De Namorados

Problema-Casal De Namorados

Mensagempor luishennrique » Qui Dez 30, 2010 20:15

Bom gente preciso de uma ajudinha com este problema.

Um casal de namorados marca um encontro numa ciclovia;ele vem do norte e ela do sul. O rapaz pedala a uma velocidade de 32 km/h e a moça pedala a 24 km/h. No instante em que a distancia entre eles é de 28 km, uma abelha, que voa a 20 km/h, parte de um ponto entre os dois até encontrar um deles; então ela volta em direção ao outro e continua nesse vaivém até morrer prensada pelas rodas das bicicletas no momento em que o casal se encontra. Quantos quilômetros voou a abelha?

gente em não sei nem por onde começar, o livro até tem a resposta, mas eu não consigo resolver a questão. Alguem pode me ajudar ?

Obrigado. :y:
luishennrique
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Dez 30, 2010 19:59
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Problema-Casal De Namorados

Mensagempor Elcioschin » Sex Dez 31, 2010 15:14

Tempo para os dois se encontrarem:

D = (V + v)*t ------> 28 = (32 + 24)*t ----> 28 = 56*t ----> t = 0,5 h (ou 30 min)

Este tempo é o mesmo em que a abelha voou -----> d = v'*t ----> d = 20*0,5 ----> d = 10 km

Coitada da abelha: deve ter morrido extenuada

Coitado também do casal de namorados: como as rodas bateram de frente numa velocidade equivalente a 56 km/h o tombo de ambos dever sido bem feio.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Problema-Casal De Namorados

Mensagempor luishennrique » Sáb Jan 01, 2011 19:06

Elcioschin escreveu:Tempo para os dois se encontrarem:

D = (V + v)*t ------> 28 = (32 + 24)*t ----> 28 = 56*t ----> t = 0,5 h (ou 30 min)

Este tempo é o mesmo em que a abelha voou -----> d = v'*t ----> d = 20*0,5 ----> d = 10 km

Coitada da abelha: deve ter morrido extenuada

Coitado também do casal de namorados: como as rodas bateram de frente numa velocidade equivalente a 56 km/h o tombo de ambos dever sido bem feio.


Muito Obrigado Elcioschin.
luishennrique
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Dez 30, 2010 19:59
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Problema-Casal De Namorados

Mensagempor PedroSantos » Dom Jan 02, 2011 07:52

Fiquei com dúvidas em relação à proposta de resolução apresentada pelo Elcioschin. Por isso recorri-me do metodo experimental

Inicialmente a abelha parte de um ponto intermédio entre o rapaz e a rapariga. Por isso apliquei a expressão
t=\frac{D}{a+b}

para a igual à velocidade da abelha e b para a velocidade de um dos outros.Seja b a velocidade do rapaz.

t=\frac{14}{20+32}

O que resulta em aproximadamente 16 min.

Imaginemos que o rapaz, e a rapariga se posicionam na reta real. Onde, inicialmente, o rapaz ocupa o ponto de abscissa -14 e a rapariga a abscissa 14. Após este primeiro momento de 16 min o rapaz percorreu:

\frac{32}{60}*16\approx8,5

e ocupa agora a abscissa -5,5.

A rapariga percorreu

\frac{24}{60}*16=6.4

e ocupa a abscissa 7,6.

Agora, e até ao final, utilizo as velocidades do rapaz e da rapariga.

D=7,6-(-5,5)

t=\frac{13,1}{32+24}

t\approx0,234
Ou seja t=14 min
Assim a abelha percorreu um total de (14min+16min)*20km/h. Provavelmente a primeira parte da minha demonstração é indeferente para a resolução do problema.
PedroSantos
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Dez 01, 2010 16:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: ensino secundário
Andamento: cursando

Re: Problema-Casal De Namorados

Mensagempor luishennrique » Dom Jan 02, 2011 23:00

PedroSantos escreveu:Fiquei com dúvidas em relação à proposta de resolução apresentada pelo Elcioschin. Por isso recorri-me do metodo experimental

Inicialmente a abelha parte de um ponto intermédio entre o rapaz e a rapariga. Por isso apliquei a expressão
t=\frac{D}{a+b}

para a igual à velocidade da abelha e b para a velocidade de um dos outros.Seja b a velocidade do rapaz.

t=\frac{14}{20+32}

O que resulta em aproximadamente 16 min.

Imaginemos que o rapaz, e a rapariga se posicionam na reta real. Onde, inicialmente, o rapaz ocupa o ponto de abscissa -14 e a rapariga a abscissa 14. Após este primeiro momento de 16 min o rapaz percorreu:

\frac{32}{60}*16\approx8,5

e ocupa agora a abscissa -5,5.

A rapariga percorreu

\frac{24}{60}*16=6.4

e ocupa a abscissa 7,6.

Agora, e até ao final, utilizo as velocidades do rapaz e da rapariga.

D=7,6-(-5,5)

t=\frac{13,1}{32+24}

t\approx0,234
Ou seja t=14 min
Assim a abelha percorreu um total de (14min+16min)*20km/h. Provavelmente a primeira parte da minha demonstração é indeferente para a resolução do problema.


Me parece complicado, mas de qualquer forma valeu ? :y:
luishennrique
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Dez 30, 2010 19:59
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}