• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistema Linear

Sistema Linear

Mensagempor Bruno Pinheiro » Dom Dez 26, 2010 22:47

Olá, estou com dúvidas em relação a este exercício. Cheguei a um início de caminho, mas não encontro saída para chegar às alternativas disponíveis. Segue abaixo a questão, com meu raciocínio e minha resolução:

(CESGRANRIO) Um dos pares (x,y) que é solução do sistema:

|x|=y+6 ...(1)
x²+y=14 ...(2)

a)(-11,2)
b)(-11,2)
c)(-4,-2) (gabarito)
d)(4,2)
e)(8,2)

De (1) vem:
\left[x \right]=y+6, se \;y\succ-6
\left[x \right]=-y+6, se \;y\prec-6

Substituindo (1) em (2), tem-se:
(y+6)² + y - 14=0 => y'=-11 e y''=-2 => x'=-(-11)+6=17 X''=(-2)+6=4 => (x,y)=(17, -11) ou (-2,4).
Bruno Pinheiro
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Dez 26, 2010 21:18
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: Sistema Linear

Mensagempor Elcioschin » Seg Dez 27, 2010 21:23

|x| = y + 6 ----> Temos duas soluções:

1) + x = y + 6 ----> y = x - 6 -----> x² + y = 14 ----> x² + x - 6 = 14 ----> x² + x - 20 = 0 ----> Raízes x = - 5 e x = 4

1.1) Para x = - 5 -----> y = - 5 - 6 ----> y = - 11 -----> (-5, -11)
1.2) Para x = 4 ------> y = 4 - 6 ------> y = - 2 ------> (4, -2)

2) - x = y + 6 -----> y = - x - 6 -----> x² + y = 14 ----> x² - x - 6 = 14 ------> x² - x - 20 = 0 ----> Raízes: x = 5 e x = - 4

2.1) Para x = 5 -----> y = - 5 - 6 ----> y = - 11 -----> (5, -11)
1.2) Para x = - 4 -----> y = 4 - 6 ------> y = - 2 ------> (-4, -2)
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Sistema Linear

Mensagempor Bruno Pinheiro » Ter Dez 28, 2010 00:59

Muito obrigado!!
Bruno Pinheiro
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Dez 26, 2010 21:18
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Ambiental
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}