por carlosvinnicius » Seg Dez 27, 2010 01:08
Comecei a estudar derivadas agora e sempre que é pra derivar uma fração tenho problemas =s Alguém pode me explicar como deriva

Agradeço desde já!
A resposta é

-
carlosvinnicius
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sex Dez 17, 2010 14:26
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
-
por Moura » Seg Dez 27, 2010 12:29
Regra do quociente

P = NP
-
Moura
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Seg Dez 13, 2010 11:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por carlosvinnicius » Seg Dez 27, 2010 13:11
Tem como resolver a questão pra mim por essa regra explicando passo-a-passo? Eu ainda não entendi direito... obrigado pela resposta Moura!
-
carlosvinnicius
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sex Dez 17, 2010 14:26
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
-
por Moura » Seg Dez 27, 2010 14:00
Editado pela última vez por
Moura em Seg Dez 27, 2010 14:35, em um total de 1 vez.
P = NP
-
Moura
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Seg Dez 13, 2010 11:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problema envolvendo derivadas.
por arthurvct » Sex Mai 03, 2013 20:16
- 4 Respostas
- 2712 Exibições
- Última mensagem por arthurvct

Qui Mai 16, 2013 19:23
Cálculo: Limites, Derivadas e Integrais
-
- Problema de otimização - Derivadas
por Napiresilva » Seg Out 10, 2016 15:21
- 1 Respostas
- 3094 Exibições
- Última mensagem por adauto martins

Qui Out 13, 2016 17:07
Cálculo: Limites, Derivadas e Integrais
-
- Problema max e mins ( aplicações de derivadas )
por Nandodtx » Dom Mai 29, 2011 00:17
- 11 Respostas
- 6465 Exibições
- Última mensagem por LuizAquino

Seg Mai 30, 2011 11:44
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Problema com prova: f par --> f' ímpar
por Imscatman » Qui Nov 17, 2011 14:04
- 2 Respostas
- 4607 Exibições
- Última mensagem por Imscatman

Sáb Nov 19, 2011 08:40
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADAS PARCIAIS/GRADIENTE] Problema.
por phsalves » Qua Dez 10, 2014 20:24
- 6 Respostas
- 7601 Exibições
- Última mensagem por adauto martins

Qua Dez 17, 2014 15:43
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.