por claudia » Seg Ago 25, 2008 14:58
Fábio,
estou com dúvidas em duas questões: 1. Se sec

=
![\sqrt[]{2} \sqrt[]{2}](/latexrender/pictures/f21662d1cabab6e8b273a4b6f1cd663a.png)
e

, então

é igual a:
já tentei passar para sen e cos, para depois voltar à sec, mas não deu certo:

=

È por aí?
2. O gráfico da função definida por f(x)=x2 + bx + c

R, em que c=cos

a) intercepta o eixo das abscissas em exatamente 2 pontos positivos
b) intercepta o eixo das abscissas em exatamente 2 pontos negativos
c) intercepta o eixo das abscisas em 2 pontos de sinais diferentes
d) intercepta o eixo das abscissas na origem
e) não intercepta o eixo das abscissas.
Essa não sei nem por onde começo.

?
-
claudia
- Usuário Dedicado

-
- Mensagens: 46
- Registrado em: Qua Ago 13, 2008 17:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: pré-vestibular
- Andamento: formado
por admin » Seg Ago 25, 2008 17:11
Olá Cláudia, boa tarde!
Na questão 1, busque calcular diretamente os elementos da expressão, são eles:



Para encontrar a tangente, utilize o teorema de Pitágoras (esta relação trigonométrica:

).
Aqui, novamente, lembre-se do módulo ao extrair a raiz quadrada do quadrado da tangente.
Utilize o dado da limitação do

, ou seja, ele está no 4º quadrante, logo a tangente é negativa (não avance enquanto não visualizar na circunferência trigonométrica)!
Com a tangente, obtenha a cotangente.
Em seguida, semelhança de triângulos para o seno.
E por fim, a cosecante.
Substituindo na expressão, o cálculo será simples.
claudia escreveu:2. O gráfico da função definida por f(x)=x2 + bx + c

R, em que c=cos

Confira o enunciado da segunda questão.
Até mais!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por claudia » Ter Ago 26, 2008 14:17
Teve erro, o correto é: f(x) =

.
-
claudia
- Usuário Dedicado

-
- Mensagens: 46
- Registrado em: Qua Ago 13, 2008 17:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: pré-vestibular
- Andamento: formado
por claudia » Ter Ago 26, 2008 14:24
A 1ª eu consegui. Tão simples quando se tem uma dica. Nem imaginei por esse lado.
Obrigada!

-
claudia
- Usuário Dedicado

-
- Mensagens: 46
- Registrado em: Qua Ago 13, 2008 17:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: pré-vestibular
- Andamento: formado
por admin » Ter Ago 26, 2008 17:30
2. O gráfico da função definida por

, em que

a) intercepta o eixo das abscissas em exatamente 2 pontos positivos
b) intercepta o eixo das abscissas em exatamente 2 pontos negativos
c) intercepta o eixo das abscisas em 2 pontos de sinais diferentes
d) intercepta o eixo das abscissas na origem
e) não intercepta o eixo das abscissas.
Olá Cláudia!
Esta questão trata do estudo de sinais.
Por ser uma função do segundo grau, para começar, pergunte-se: ela possui raízes reais ou não?
Se sim, ela intercepta o eixo das abscissas, caso contrário, não intercepta.
Esta análise fazemos através do discriminante

. Escreva-o e pense como será o sinal dele.
Lembre-se que o ângulo

é do 3º quadrante! E que um número ao quadrado é sempre positivo.
Pois bem, após analisar o sinal do

, você saberá se a função intercepta ou não o eixo das abscissas.
Se não, há apenas uma alternativa.
Se sim, você precisará fazer uma outra análise de sinal para ter certeza sobre as demais: pense no produto das raízes!
Comente qualquer nova dificuldade.
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por claudia » Qua Ago 27, 2008 17:15
Boa Tarde, Fábio
Consegui resolver a 2ª também. Obrigada!
-
claudia
- Usuário Dedicado

-
- Mensagens: 46
- Registrado em: Qua Ago 13, 2008 17:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: pré-vestibular
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Trigonometria - Relações entre razões trigonométricas
por METEOS » Seg Set 30, 2013 17:06
- 1 Respostas
- 1354 Exibições
- Última mensagem por Russman

Seg Set 30, 2013 17:41
Trigonometria
-
- Relações entre 2 números
por leocadio » Dom Nov 02, 2008 14:29
- 3 Respostas
- 2879 Exibições
- Última mensagem por Sandra Piedade

Dom Nov 02, 2008 15:57
Álgebra Elementar
-
- Relaçoes entre conjuntos
por Zanatta » Qua Abr 24, 2013 20:42
- 0 Respostas
- 1275 Exibições
- Última mensagem por Zanatta

Qua Abr 24, 2013 20:42
Conjuntos
-
- Mostrar relações binárias entre conjuntos
por danieltnaves » Sex Abr 15, 2011 14:20
- 6 Respostas
- 3154 Exibições
- Última mensagem por danieltnaves

Sex Abr 15, 2011 17:49
Álgebra Elementar
-
- [Relação entre Conjuntos] Relações de Equivalência
por andrelangoni » Qui Abr 20, 2017 23:12
- 0 Respostas
- 2126 Exibições
- Última mensagem por andrelangoni

Qui Abr 20, 2017 23:12
Conjuntos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.