por Flordeliz » Ter Dez 14, 2010 20:59
Olá amigos...
Mais uma vez estou pedindo socorro, será qu alguém pode me ajudar?
Eis o problema:
O crescimento populacional de uma determinada cidade obedece ao seguinte modelo de equação. Q(T) = 100 + 32 (1 – e^-kt ),onde t é dado em anos, Q(t) é dado em milhares de habitantes no tempo t, e k é uma constante específica desta cidade a ser determinada. Estima-se que daqui a três anos a população será de 128 mil habitantes. Então, de acordo com esse modelo, daqui a cinco anos a população será de quantos milhares de habitantes ?
Substitui Q(T) por 128 e t por 3, ficando 128 = 100 + 32( 1 - e^-3k)
Fazendo e^-3k = y, temos: 28/32 = 1 - y, logo y = 8^-1
Se y = e^-3k, então, e^-3k = 8^-1 e agora, não consigo prosseguir....podem me ajudar?
Grata!
Abraço a todos.
-
Flordeliz
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Ter Nov 16, 2010 13:42
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: estudante
- Andamento: cursando
por Elcioschin » Qua Dez 15, 2010 15:19
128 = 100 + 32( 1 - e^-3k)
28 = 32*(1 - e^-3k) ----> 7 = 8*(1 - e^-3k) ----> 7/8 = 1 - e^-3k ---> e^-3k = 1/8 ----> (e^k)^-3 = 2^-3 ----> e^k = 2
Q(5) = 100 + 32*[1 - e^-5k] ---> Q(5) = 100 + 32*[1 - (e^k)^-5] ----> Q(5) = 100 + 32*(1 - 2^-5) ----> Q(5) = 100 + 32*(1 - 1/32)
Q(5) = 100 + 32*(31/32) ----> Q(5) = 100 + 31 ----> Q(5) = 131 mil
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por Flordeliz » Qua Dez 15, 2010 21:40
Caro Elcioschin , às vezes fico pensando por que temos tendência a complicar ao invés de simplificar....!
Muitíssimo obrigada, por facilitar meu entendimento e simplificar minha vida mais um pouquinho.....!!!!rsrsrs
Um grande abraço e que Deus te abençoe.
Até!
-
Flordeliz
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Ter Nov 16, 2010 13:42
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: estudante
- Andamento: cursando
por Elcioschin » Qua Dez 15, 2010 22:09
FlordeLiz
Esta tendência diminui a medida em que praticamos.
Depois de praticar bastante a gente ganha experiência.
E a experiência facilita tudo: coisas aparentemente complicadas são resolvidas num piscar de olhos.
Continue estudando com afinco e você chegará lá.
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [função exponencial] crescimento populacional
por EnGENheiro_nota10 » Sex Set 05, 2014 17:24
- 0 Respostas
- 1009 Exibições
- Última mensagem por EnGENheiro_nota10

Sex Set 05, 2014 17:24
Funções
-
- [Variância e Desvio Populacional] Por que não cortar a raiz?
por Antony Shuazter » Seg Mai 14, 2012 11:05
- 0 Respostas
- 1722 Exibições
- Última mensagem por Antony Shuazter

Seg Mai 14, 2012 11:05
Estatística
-
- Desvio amostral e populacional - como encontrar o desvio
por LMP-ALFA » Sáb Ago 08, 2015 23:04
- 0 Respostas
- 1351 Exibições
- Última mensagem por LMP-ALFA

Sáb Ago 08, 2015 23:04
Estatística
-
- Crescimento Exponencial
por brunotst » Dom Set 05, 2010 10:18
- 3 Respostas
- 4117 Exibições
- Última mensagem por Douglasm

Dom Set 05, 2010 13:20
Logaritmos
-
- crescimento e decrescimento
por joandro » Dom Abr 13, 2014 11:30
- 1 Respostas
- 1342 Exibições
- Última mensagem por alienante

Ter Abr 29, 2014 17:27
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.