• Anúncio Global
    Respostas
    Exibições
    Última mensagem

questão dificil.

questão dificil.

Mensagempor natanskt » Seg Dez 13, 2010 18:20

essa duas questões,estou com duvida não consigo bater com o resultado certo.!
simplifique.\frac{2^n.(n+2)!}{(n+4)!.2^{(n-3)}}

agora essa sim é dificil.
considere o desenvolvimento do binomio (2x+1)^6 segundo as potencias decrescente de x. o primeiro,o terceiro e o ultimo termos desse desenvolvimento,nessa ordem,são termos consecutivos de uma progressão geometrica.a razaão dessa progressão é?
a-)1.225
b-)2.175
c-)3.375
d-)4.125
e-)4.275
essa questão é muito dificil.
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: questão dificil.

Mensagempor Molina » Sáb Dez 25, 2010 20:28

natanskt escreveu:essa duas questões,estou com duvida não consigo bater com o resultado certo.!
simplifique.\frac{2^n.(n+2)!}{(n+4)!.2^{(n-3)}}

Boa noite, Natan.

\frac{2^n.(n+2)!}{(n+4)!.2^{(n-3)}}

\frac{2^n.(n+2)!}{(n+4)!.2^n.2^{-3}}

\frac{(n+2)!}{(n+4)!.2^{-3}}

\frac{(n+2)!}{(n+4).(n+3).(n+2)!.2^{-3}}

\frac{1}{(n+4).(n+3).2^{-3}}

\frac{2^3}{(n+4).(n+3)}

\frac{8}{(n+4).(n+3)}

Acho que não dá para simplificar mais do que isso.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)