• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda em questão

Ajuda em questão

Mensagempor Igor » Sex Dez 03, 2010 19:20

A soma e o produto das raízes do polinômio P(x)= 2x²+ bx+ c são, respectivamente, -6 e 5. Assim, o valor mínimo que P(x) pode assumir pertence ao conjunto:
A) { -6 , -4 , -1 }
B) {-5 , -3 , 0 }
C) { -8 , 1 , 6 }
D) { 2 , 4 , 5 }
E) { 3 , 7 , 8 }

Resolução:
Eu resolvi aplicando Girard , que x¹ + x² = -6, logo -b/2 = -6, portanto, b = 12 e x¹.x² = 5, logo (-1)² . c/2 = 5, portanto, c = 10. assim a equação fica P(x)= 2x² + 12x + 10, tendo como raízes resolvendo a expressão -1 e -5.

Mas, não sei qual resposta certa a marca pelo o que pede a questão. Se alguém puder me ajudar, obrigado pela força !
Igor
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Nov 21, 2010 10:29
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ajuda em questão

Mensagempor Molina » Sáb Dez 04, 2010 18:43

Boa tarde , Igor.

Você encontrou as raízes, tudo bem. Mas elas não serão utilizadas, já que a questão pede o ponto de mínimo. Como a > 0, este polinômio de 2° grau tem ponto de mínimo, ou seja, o menor ponto que p(x) vai assumir. Como é de segundo grau, você pode encontrar através do Y_v:

Y_v=\frac{-\Delta}{4a}

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Ajuda em questão

Mensagempor Lorettto » Sáb Dez 04, 2010 19:24

você precisa das raízes pra achar os valores de B e C , poderia ter feito um sistema para acha-los, mas também está correto fazer por GIRARD. Achando o 2x² + 12x + 10 , você acha o Delta e joga na Fórmula passada acima. Vai dar a alternativa C .
Abraço, Loreto.
Lorettto
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Sáb Nov 27, 2010 01:17
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}