• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resolução Triangulo Retangulo

Resolução Triangulo Retangulo

Mensagempor PedroSantos » Qua Dez 01, 2010 18:40

Num triângulo retângulo sabe-se que a medida do catedo adjacente ao angulo \alpha é de 4, a medida do cateto oposto é 5 e a \tan \alpha=\frac{5}{4} .

Pertende-se determinar a amplitude do ângulo \alpha (em graus).

Sei que nas máquinas calculadoras existe a tecla \tan ^{-1}, no entanto gostaria de saber como resolver este problema de uma forma algébrica.

Obrigado
PedroSantos
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Dez 01, 2010 16:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: ensino secundário
Andamento: cursando

Re: Resolução Triangulo Retangulo

Mensagempor Elcioschin » Qui Dez 02, 2010 13:53

A solução algébrica é impossível, pois o valor do ângulo é um número irracional.

Existem 3 modos de calcular um valor aproximado:

1) Calculadora ou Excel
2) Tabela de seno cosseno e tangente para ânglos entre 0º e 90º
3) Uso de séries (matéria do curso superior):

arctgx = tg^-1(x) = x¹/1! - x³/3! + x^5/5! - x^7/7! + ....... = x - x³/6 + x^5/120 - x^7/5040 + ......

Basta agora fazer x = 5/4
Editado pela última vez por Elcioschin em Qui Dez 02, 2010 15:48, em um total de 1 vez.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Resolução Triangulo Retangulo

Mensagempor PedroSantos » Qui Dez 02, 2010 14:46

Obrigado pela orientação.
PedroSantos
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Dez 01, 2010 16:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: ensino secundário
Andamento: cursando

Re: Resolução Triangulo Retangulo

Mensagempor Elcioschin » Qui Dez 02, 2010 15:48

Pedro

Fiz uma pequena complementação.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.