• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida na questão

Dúvida na questão

Mensagempor igorcalfe » Qua Dez 01, 2010 10:38

Se P é um ponto qualquer da base BC de um triângulo isósceles ABC, as somas das distancias de P aos lados congruentes é contante e igual a?
a à base BC
b a altura relativa a um dos lados congruentes
c a um dos lados congruentes
d não é constante

Consegui montar o triângulo e tal, mas depois ñ consegui mais fazer...
igorcalfe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Dom Out 17, 2010 10:39
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dúvida na questão

Mensagempor alexandre32100 » Qua Dez 01, 2010 15:56

Como este valor é constante (pelo menos é o que sujere o enunciado), temos que achar o valor da soma das duas distâncias (lembre-se que a distância é uma reta perpendicular ao segmento em questão).
Ora, se P está sobre um dos lados congruentes, sua distância para este lado é 0 e para o outro é exatamente a altura relativa a ele, ou seja, alternativa b.
alexandre32100
 


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}