por guitaedis » Ter Nov 30, 2010 18:42
Olá galera esperta, tudo em paz?
Posso usar logaritmo para fazer essa conta de matemática financeira(exponencial?)
A questão é assim:
Em quantos meses pagarei por um carro cujo preço é R$ 6.021,50, sabendo que a financeira cobra 1% de juros ao mês e que cada parcela mensal é de R$ 200,00? Se comprar outro carro no valor de R$ 20.000,00 financiado por esta financeira e com a mesma taxa de juros, quantas parcelas de R$ 200,00 seriam necessárias para quitar o débito? Encontre a solução para esta questão sabendo que:

Onde Po = preço inicial
i = taxa
n = quantidade de meses
Estou tentando passar isso pra minha sobrinha e não estou conseguindo explicar pra ela no modo de Logaritmo.
Agradeço pela ajuda...
-
guitaedis
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Nov 30, 2010 17:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
Voltar para Matemática Financeira
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Sem usar a fórmula de Herao como posso fazer
por zenildo » Qui Jun 09, 2016 18:38
- 1 Respostas
- 1844 Exibições
- Última mensagem por DanielFerreira

Sáb Jun 11, 2016 09:07
Geometria Analítica
-
- Posso fazer isso?
por Cleyson007 » Qui Mai 03, 2012 09:54
- 5 Respostas
- 2414 Exibições
- Última mensagem por LuizAquino

Qui Mai 03, 2012 16:20
Cálculo: Limites, Derivadas e Integrais
-
- onde posso encontrar material para estudo de limites?
por ricardosanto » Sex Mai 18, 2012 19:18
- 0 Respostas
- 2339 Exibições
- Última mensagem por ricardosanto

Sex Mai 18, 2012 19:18
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Que método usar para resolver esse problema?
por souzalucasr » Seg Mai 07, 2012 12:43
- 1 Respostas
- 1528 Exibições
- Última mensagem por LuizAquino

Seg Mai 07, 2012 18:17
Cálculo: Limites, Derivadas e Integrais
-
- [otimização] essa eu não consegui fazer, ajuda
por vinicastro » Dom Dez 16, 2012 20:30
- 1 Respostas
- 1628 Exibições
- Última mensagem por young_jedi

Dom Dez 16, 2012 22:07
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.