por Anakinrj » Ter Nov 23, 2010 21:33

Bom estou com uma duvida sobre essa questao.
Calcular essa integral
1
? x²dx= com a seguinte resposta 7/3 u.d.s
2
Como se faz?

-
Anakinrj
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Nov 23, 2010 21:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por VtinxD » Qua Nov 24, 2010 01:51
Faça pelo Teorema fundamental do cálculo, porem perceba que não existe área negativa.
Mesmo assim ,particularmente, acho estranho a resposta não ser negativa, que é a resolução pelo teorema fundamental do cálculo e não sua interpretação geométrica.
Espero ter ajudado.
-
VtinxD
- Usuário Parceiro

-
- Mensagens: 64
- Registrado em: Dom Ago 15, 2010 18:29
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Bacharelado em Matematica
- Andamento: cursando
por Anakinrj » Qua Nov 24, 2010 11:55
So mais uma duvida o que significa u.d.s?
-
Anakinrj
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Nov 23, 2010 21:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por Neperiano » Qua Nov 24, 2010 12:10
Ola
Deve ser Unidade de ... dai eu não sei, segmento talvez o certo seria u.a, mas pode ser assim tmb
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por Jefferson » Sáb Nov 27, 2010 23:02
Depende do contexto se faz referência com área:
U d s = Unidade de Superfície mais comum usar U A = Unidade de área.
Na verdade toda vez que não foi definida uma unidade padrão o ideal é calcular o valor numérico,
sem unidade. E não sair criando uma unidade para o que não tem.
-
Jefferson
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Ter Nov 16, 2010 23:18
- Localização: Vila Velha - ES
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: formado
por MarceloFantini » Dom Nov 28, 2010 00:07
Na verdade usar

ou

está certo, pois não está criando uma nova unidade, apenas deixando a unidade livre.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por andrefahl » Dom Nov 28, 2010 00:11
u.d.s para unidades de segmento...
para uma integral que naum é d linha....
=P
eu mereços essas coisas viu!
-
andrefahl
- Usuário Dedicado

-
- Mensagens: 36
- Registrado em: Qui Out 28, 2010 18:05
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física - UNICAMP
- Andamento: cursando
por demolot » Sáb Dez 11, 2010 14:13
Basta primitivar e aplicar o integral

Substituis 1º por 1 e subtrais por substituição de 2
-
demolot
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Sáb Dez 11, 2010 14:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Informatica
- Andamento: cursando
por Moura » Ter Dez 14, 2010 06:58
P = NP
-
Moura
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Seg Dez 13, 2010 11:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calcular área
por Anakinrj » Qua Nov 24, 2010 12:11
- 2 Respostas
- 2173 Exibições
- Última mensagem por Moura

Ter Dez 14, 2010 07:44
Cálculo: Limites, Derivadas e Integrais
-
- Calcular área
por pedcoi » Qui Fev 02, 2012 11:19
- 2 Respostas
- 1913 Exibições
- Última mensagem por pedcoi

Sex Fev 03, 2012 14:03
Cálculo: Limites, Derivadas e Integrais
-
- Calcular unidades de área?
por natanlp » Qua Fev 01, 2012 00:45
- 9 Respostas
- 5365 Exibições
- Última mensagem por Arkanus Darondra

Qua Fev 01, 2012 15:34
Geometria Analítica
-
- [INTEGRAL]Calcular área y=x^2
por krtc » Qua Jul 24, 2013 02:07
- 5 Respostas
- 3533 Exibições
- Última mensagem por Russman

Qua Jul 24, 2013 03:13
Cálculo: Limites, Derivadas e Integrais
-
- calcular a área da funçao
por edilaine33 » Dom Dez 01, 2013 08:54
- 1 Respostas
- 1608 Exibições
- Última mensagem por Pessoa Estranha

Dom Dez 01, 2013 10:13
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.