Primeiramente gostaria de pedir desculpas pelo incomodo. Gostaria da opinião de vocês sobre a resolução de uma questão referente à multiplicadores de Lagrange.
A questão é a seguinte:
Uma certa sonda espacial possui formato de um elipsoide 4*x^2+ y^2+4*z^2 = 16.
Sabendo-se que a temperatura (C) sobre a sua superfcie é modelada pela formula
T(x; y; z) = 8*x^2 + 4*y*z ? 16*z + 600, encontre o ponto mais quente.
Primeiramente eu isolei "x" na equação do elipsóide, substituí na equação da temperatura e calculei as derivadas parciais com relação a "y" e a "z". Entretanto, obtive como resposta uma equação com raízes complexas. Depois tentei usar um software matemático (Mathematica e o Maple) para calcular os valores das equações obtidas pelos multiplicadores de Lagrange, tomando T(x,y,z) como a função a sex maximizada e obtive 7 pontos P(x,y,z). Gostaria de saber se essa segunda forma de resolver é a correta (uso de software). Caso não, você poderia me dar alguma dica para a resolução do problema.
A questão encontra-se na página do ICMC da USP: http://www.icmc.usp.br/~matofu/2-2010/s ... 4-2010.pdf (5º quesito)
Agradeço desde já,
Lúcia.

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
o ângulo entre o eixo horizontal e o afixo
. O triângulo é retângulo com catetos
e
, tal que
. Seja
o ângulo complementar. Então
. Como
, o ângulo que o afixo
formará com a horizontal será
, então
. Como módulo é um:
.
.