• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Mais um desafio..

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Mais um desafio..

Mensagempor victoreis1 » Seg Nov 22, 2010 21:26

seja f(x) uma função dos naturais nos naturais, tal que

f(x) = x^{x-1^{x-2^{...^{2^{1}}}}}

por exemplo, f(3) = 3^{2^{1}} = 9

Deste modo, o último dígito, na base decimal, de f(2009) é?

tem como calcular isso usando aritmética modular? Oo

edit: fiz aqui e deu 1, não sei se tá certo..
victoreis1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qua Out 20, 2010 14:49
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Mais um desafio..

Mensagempor Molina » Seg Nov 22, 2010 23:14

Boa noite, Victor.

Vou dar uma dica que espero que seja esse o caminho e acredito que vá ajudar.

Perceba que:

9^0=1 (um)
9^1=9 (nove)
9^2=81 (oitenta e um)
9^3=729 (setecentos e vinte e nove)

.
.
.

;)
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Mais um desafio..

Mensagempor victoreis1 » Seg Nov 22, 2010 23:23

molina escreveu:Boa noite, Victor.

Vou dar uma dica que espero que seja esse o caminho e acredito que vá ajudar.

Perceba que:

9^0=1 (um)
9^1=9 (nove)
9^2=81 (oitenta e um)
9^3=729 (setecentos e vinte e nove)

.
.
.

;)


exatamente, vi que 2009 \equiv 9 (mod 10), e, portanto, 2009^x \equiv 9^x (mod 10)

daí vi que x era par, visto que x é múltiplo de 2008, logo f(2009) termina com 1. certo?
victoreis1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qua Out 20, 2010 14:49
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Mais um desafio..

Mensagempor Molina » Seg Nov 22, 2010 23:54

No meu entendimento é isso sim, Victor.

Para garantir vou começar a fazer num papelzinho, quando eu terminar te aviso!

:lol:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Desafios Difíceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}