• Anúncio Global
    Respostas
    Exibições
    Última mensagem

demosntrar

demosntrar

Mensagempor fttofolo » Sex Nov 19, 2010 11:05

prove que
\sqrt[3]{2+\sqrt[2]{5}}+\sqrt[3]{2-\sqrt[2]{5}}=1
fttofolo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Sex Nov 19, 2010 10:15
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: demosntrar

Mensagempor alexandre32100 » Sex Nov 19, 2010 13:18

\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}} \text{  (HI)}
Se elevarmos as duas expressões ao cubo temos:
\left ( \sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right )^3=1^3=1

É bom lembrar que (a+b)^3=a^3 + 3a^2 b + 3ab^2 + b^3.
Aplicando isso à equação do problema:
\\2+\sqrt{5}+3\cdot\sqrt[3]{(2+\sqrt{5})(2+\sqrt{5})(2-\sqrt{5})}+3\cdot\sqrt[3]{(2+\sqrt{5})(2-\sqrt{5})(2-\sqrt{5})}+2-\sqrt{5}
\text{Obs: } (2+\sqrt{5})(2-\sqrt{5})=2^2-5=-1 \text{ e }\sqrt[3]{-1}=-1 , assim:
4+3\cdot\sqrt[3]{(2+\sqrt{5})(-1)}+3\cdot\sqrt[3]{(2-\sqrt{5})(-1)}=4-3\cdot\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)
Pela HI, 4-3\cdot1=1, cqd.
alexandre32100
 


Voltar para Álgebra Elementar

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.