por angeloka » Dom Nov 14, 2010 18:56
calcule a área compreendida entre a curva y=

-6x+8 e o eixo x de x=0 a x=3.
-
angeloka
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Ter Out 05, 2010 18:20
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: pós em matemática
- Andamento: cursando
por Neperiano » Seg Nov 15, 2010 12:16
Ola
Neste caso como parte da curva fica abaixo do eixo x, monte o gráfico e veja, é preciso criar duas integrais.
Integral de 2 a 0, x^2 -6x+8 + Integral de 3 a 2,- (x^2 -6x+8,)
Coloque o menos pois ela esta abaixo do eixo x, se voce não colocar as duas equações irão se anular e voce tera a area liquida, assim voce conseguira a area total.
Resolvendo
[(x^3)/3 - 3x^2 + 8x] com limite de 2 a 0 e [(-x^3)/3+3x^2 - 8x] com limites de 3 a 2
Substituindo
8/3 - 12 + 16 - 0 + (-9 + 27 - 24) - (-8/3 + 12 - 16)
8/3 + 4 - 6 +8/3 + 4
8/3 + 8/3 + 2, aplicando
8 + 8 + 6 = 22/3
Eu acho que é isso
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por Moura » Ter Dez 14, 2010 01:00
P = NP
-
Moura
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Seg Dez 13, 2010 11:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- cálculo de área
por rogerdbest » Qui Ago 05, 2010 17:02
- 1 Respostas
- 2019 Exibições
- Última mensagem por Molina

Qui Ago 05, 2010 18:01
Geometria Plana
-
- calculo de área
por angeloka » Sáb Nov 13, 2010 22:41
- 1 Respostas
- 1870 Exibições
- Última mensagem por MarceloFantini

Dom Nov 14, 2010 00:18
Cálculo: Limites, Derivadas e Integrais
-
- calculo de área
por angeloka » Dom Nov 14, 2010 17:49
- 2 Respostas
- 2213 Exibições
- Última mensagem por Moura

Ter Dez 14, 2010 08:05
Cálculo: Limites, Derivadas e Integrais
-
- Calculo de area
por shantziu » Seg Set 05, 2011 16:57
- 1 Respostas
- 1393 Exibições
- Última mensagem por LuizAquino

Seg Set 05, 2011 21:49
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo da área
por matway » Sex Set 09, 2011 17:11
- 4 Respostas
- 1614 Exibições
- Última mensagem por matway

Sáb Set 10, 2011 11:03
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.