por macburn » Qua Nov 03, 2010 19:14
Olá pessoal,
Boa noite, tudo bom? Tenho a seguinte equação:

Como seria a derivada desta equação em relação a V.I
P.S.: pessoal, V.I é a equação de potência elétrica

Deixo aqui meus agradecimentos pessoal!
Abraços!
-
macburn
- Usuário Dedicado

-
- Mensagens: 25
- Registrado em: Ter Nov 02, 2010 14:36
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: formado
por macburn » Qua Nov 03, 2010 19:38
Olá pessoal,
Olá Fantini. Muito bom meu nobre! Você por acaso teria um material de consulta para que eu pudesse dar uma olhada, e ver como foi resolvido? meio que um passo-a-passo!
Desde já meus sinceros agradecimentos...!
Abraços!
-
macburn
- Usuário Dedicado

-
- Mensagens: 25
- Registrado em: Ter Nov 02, 2010 14:36
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: formado
por MarceloFantini » Qua Nov 03, 2010 20:09
Qualquer livro de cálculo multivariável serve (desde que você saiba as regras de derivação de uma variável). Existe o Guidorizzi, Stewart, Boulos, Marilia Flemming, George Thomas...
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por macburn » Qua Nov 03, 2010 21:14
Boa noite Fantini,
Sem querer abusar meu nobre, será que você poderia descrever o passo-a-passo desta questão?
Meus agradecimentos!
-
macburn
- Usuário Dedicado

-
- Mensagens: 25
- Registrado em: Ter Nov 02, 2010 14:36
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: formado
por MarceloFantini » Qua Nov 03, 2010 21:31
Do cálculo de uma variável, para derivar o quociente de duas funções:

Quando temos funções de duas ou mais variáveis, o processo é similar, porém derivamos em relação à uma variável e mantemos as outras constantes, no caso feito,

e

são outras variáveis, porém na hora de derivar foram mantidas constantes. Assim, na hora de derivar você enxerga a função deste modo:

E aplica como se fosse o cálculo de uma variável.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por macburn » Qua Nov 03, 2010 21:39
Boa noite Fantini,
Muito bom meu nobre! Foi bem esclarecedor sua explicação! Gostei muito. Que Deus continue iluminando sua mente. Parabéns!
Abraços!
-
macburn
- Usuário Dedicado

-
- Mensagens: 25
- Registrado em: Ter Nov 02, 2010 14:36
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: formado
por macburn » Dom Nov 07, 2010 13:00
Alô pessoal,
Boa tarde! Estou travando nessa essa equação para obter a derivada:

Lembrando que:

, então,
Utilizando a expressão:

Pessoal, travei aqui!

Se algum colega puder me mostrar como avançar,
desde já, meus sinceros agradecimentos...
-
macburn
- Usuário Dedicado

-
- Mensagens: 25
- Registrado em: Ter Nov 02, 2010 14:36
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: formado
por macburn » Seg Nov 08, 2010 21:15
Bom noite pessoal,
Como vai pessoal? Pessoal dei uma travada nessa derivada aí! Será que alguém quando dispuser de um tempo, por gentileza me dê uma força!
Abraços pessoal! Bons estudos a todos
-
macburn
- Usuário Dedicado

-
- Mensagens: 25
- Registrado em: Ter Nov 02, 2010 14:36
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: formado
por MarceloFantini » Seg Nov 08, 2010 22:06
A função

no caso é

e não

. Refaça usando isso.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por macburn » Ter Nov 09, 2010 21:02
Olá pessoal,
Grande Fantini, como vai meu brother. Sem qquerer abusar meu nobre, não teria como vc quebrar essa pra mim, até dar uma relembrada. Vou na biblioteca pegar um livro de calculo I para dar uma recordada. Se puder, serei imensamente grato meu nobre!
Abraços meu querido!
-
macburn
- Usuário Dedicado

-
- Mensagens: 25
- Registrado em: Ter Nov 02, 2010 14:36
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: formado
por macburn » Qua Nov 10, 2010 20:36
Boa noite pessoal,
Obrigado pela grande ajuda FAntini!
Um grande abraço meu nobre! Bons estudos...
-
macburn
- Usuário Dedicado

-
- Mensagens: 25
- Registrado em: Ter Nov 02, 2010 14:36
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada] Quero ver quem deriva essa!
por qrover » Qua Out 12, 2011 13:18
- 3 Respostas
- 2387 Exibições
- Última mensagem por wadson leite

Qui Out 13, 2011 13:52
Cálculo: Limites, Derivadas e Integrais
-
- Como resolver essa equação?
por viniciusantonio » Qua Out 21, 2009 19:17
- 1 Respostas
- 3930 Exibições
- Última mensagem por carlos r m oliveira

Qui Out 22, 2009 14:55
Cálculo: Limites, Derivadas e Integrais
-
- Como resolvo essa equação?
por LuizCarlos » Seg Jul 25, 2011 14:07
- 8 Respostas
- 4636 Exibições
- Última mensagem por LuizCarlos

Ter Jul 26, 2011 00:04
Sistemas de Equações
-
- Como expressar essa equação?
por Alerecife » Dom Nov 04, 2012 10:58
- 5 Respostas
- 2756 Exibições
- Última mensagem por Alerecife

Dom Abr 28, 2013 12:47
Funções
-
- Como resolver essa equação??
por lu1_cas2 » Ter Jul 29, 2014 02:50
- 1 Respostas
- 1350 Exibições
- Última mensagem por Russman

Sáb Ago 02, 2014 16:05
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.