• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(AFA) inequação logaritmica

(AFA) inequação logaritmica

Mensagempor natanskt » Sex Out 29, 2010 10:49

o conjunto solução da inequação (0,5)^{x(x-2)}<(0,25)^{x-1,5} é:
a-){ x e R/X<1}
B-){ x e R/x>3}
c-){x e R 1<x<3}
d-){x e R/X<1 OU X>3}
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (AFA) inequação logaritmica

Mensagempor natanskt » Qua Nov 03, 2010 23:01

minha duvida é só como começa a conta,esse é meu maior problema,depois eu consigo di boa
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (AFA) inequação logaritmica

Mensagempor MarceloFantini » Qui Nov 04, 2010 10:33

Escreva 0,25 como potência de 0,5 (dica: não precisa de logaritmo). Segunda dica: escreva como fração.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?