• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Provas de Matematica UNIFEI 2008

Provas
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

Provas de Matematica UNIFEI 2008

Mensagempor WiLLKun » Qua Jan 23, 2008 01:21

Aeee gente
blz?
disculpa ae a demora pra postar, mas eh tva sem animo pra pensar em provas e respostas
mas tah ai, tanto matematica da primeira prova qto a matematica da segunda prova
http://img89.imageshack.us/img89/1457/digitalizar0003ze5.gif
http://img231.imageshack.us/img231/2451/digitalizar0004fv4.gif
http://img177.imageshack.us/img177/2655/digitalizar0001ah7.gif
http://img255.imageshack.us/img255/9025/digitalizar0002yl7.gif

tah ai os scans das provas, eu soh tive um poko de cuidado pra apagar respostas e resoluçoes, pq pode ter alguma mto ridicula e nao qro virar perola de vestibular, estava com um poko de sono no segundo dia, foram 2 provas em horario diferentes, redaçao de manhan e fisica+mat de tarde

flww ae... divirtam-se resolvendo
WiLLKun
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Jan 15, 2008 23:23
Área/Curso: Estudante
Andamento: cursando

Resolução questão 1 - UNIFEI 2008

Mensagempor fabiosousa » Qua Jan 23, 2008 13:41

Por ser uma resolução antecipada, estejam a vontade para escreverem comentários e/ou eventuais correções, assim como postarem suas próprias resoluções. Na ocasião do gabarito oficial, faremos uma comparação das respostas.


Questão 1)
Um pai tem, hoje, 50 anos e os seus três filhos têm 5, 7 e 10 anos, respectivamente. Daqui a quantos anos a soma das idades dos três filhos será igual à idade do pai?

Resolução)

Idéia da situação:
\begin{tabular}{|r|r|r|}
\hline
&presente&futuro\\
\hline\hline
pai&50&50+x\\
filhos&5+7+10&5+x+7+x+10+x\\
\hline
\end{tabular}
Sendo x o número de anos decorridos.

Queremos que:
50+x = 5+7+10+3x

2x = 50-22

x = \frac{28}{2}

x=14
Resposta: daqui a 14 anos.

Conferindo: o pai terá 64 anos, assim como a soma das idades dos filhos (19, 21 e 24).
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 883
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Resolução questão 2 - UNIFEI 2008

Mensagempor fabiosousa » Qua Jan 23, 2008 15:53

Questão 2)
Durante quanto tempo deve ser aplicado um determinado capital, a juros simples e à taxa de 0,75% ao mês, para que o montante, no final da aplicação, seja igual a \frac{9}{5} do capital aplicado?

Resolução)

Informações:
-juros simples
C: capital inicial
J: total acumulado de juros no período
t: número de meses
i: taxa de juros
M: montante final

t=?
i=0,75% a.m.
M=\frac{9}{5}C

J = C \cdot i \cdot t

M = C + J

Condição do problema:
M = \frac{9}{5}C

C + J = \frac{9}{5}C

C + C \cdot i \cdot t = \frac{9}{5}C
\div C


1 + i \cdot t = \frac{9}{5}

i \cdot t = \frac{9}{5} - 1 = \frac{4}{5}

t = \frac{4}{5i}

t = \frac{4}{5i} =  \frac{4}{5 \cdot { \frac{0,75}{100}}} = \frac{4\cdot 100}{5 \cdot 0,75}

t \approx 107 meses
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 883
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Resolução questão 3 - UNIFEI 2008

Mensagempor fabiosousa » Qua Jan 23, 2008 21:57

Questão 3)
Para que valores de m\in\Re a equação x^2+(2m+1)x+(m-2)=0 admite raízes reais, distintas e ambas negativas?

Resolução)

Condições:
i) raízes reais
ii) raízes distintas
iii) ambas negativas

Através do discriminante, verificamos as condições i e ii.
\Delta = (2m+1)^2-4(m-2)

\Delta = 4m^2+\cancel{4m}+1-\cancel{4m}

\Delta = 4m^2+1

O discriminante em m, representa outra função do segundo grau que não possui raízes reais (possui um par de raízes complexas) e sua parábola é côncava para cima. Ou seja, \Delta é sempre positivo:
\Delta = 4m^2+1 > 0
De modo que valerá i e ii para todo m\in\Re.

Vamos analisar iii através da soma e do produto das raízes.

Soma:
x_1 + x_2 = \frac{-(2m+1)}{1}

Produto:
x_1 \cdot x_2 = \frac{m-2}{1}
Mais detalhes sobre soma e produto das raízes de uma função do segundo grau:
viewtopic.php?f=97&t=127&p=216#p216


Para que as raízes sejam ambas negativas, a soma deverá ser negativa e seu produto positivo:
\left\{ \begin{matrix}
-(2m+1) &< 0 \\
m-2 &> 0
\end{matrix}
\right.

\left\{ \begin{matrix}
2m+1 &> 0 \\
m &> 2
\end{matrix}
\right.

\left\{ \begin{matrix}
2m &> -1 \\
m &> 2
\end{matrix}
\right.

\left\{ \begin{matrix}
m &> -\frac12 \\
m &> 2
\end{matrix}
\right.

Da intersecção (e):
m > 2 sendo m\in\Re.
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 883
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado


Voltar para Vestibulares

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}