Sub-seção para materiais das disciplinas relacionadas à Geometria.
Utilize a área de pedidos para outros ou caso a sub-seção da disciplina ainda não possua material.
Provas aplicadas, notas de aulas, listas de exercícios, gabaritos, bibliografias etc.
Regras do fórum
O objetivo desta seção é compartilhar alguns materiais dos próprios alunos do IME-USP, formandos e formados, das disciplinas do curso de Licenciatura em Matemática.
Dentre os materiais, organizados por disciplinas, você encontrará:
Provas aplicadas, notas de aulas, listas de exercícios, gabaritos e bibliografias, além de outros materiais indicados ou fornecidos pelos próprios professores.
A fonte e os créditos do autor devem ser citados sempre que disponíveis.
O intuito deste compartilhamento é favorecer um estudo complementar.
Utilize a seção de pedidos para outros ou caso a sub-seção ainda não possua material.
A pesquisa do fórum facilita a localização de materiais e outros assuntos já publicados.
por andersontricordiano » Qui Nov 24, 2011 16:30
O volume de um prisma hexagonal regular é
![216\sqrt[]{3} 216\sqrt[]{3}](/latexrender/pictures/a4f6ecd37ebdc5f0077e57441f369c4f.png)
cm³ . Se a área lateral desse prisma é
![144\sqrt[]{3} 144\sqrt[]{3}](/latexrender/pictures/6f2ff757ebd7328a8ac2b3c7fe5f6076.png)
cm² , então a altura desse prisma , em cm mede:
Resposta 5
Agradeço muito quem resolver esse exercício
-
andersontricordiano
- Colaborador Voluntário

-
- Mensagens: 192
- Registrado em: Sex Mar 04, 2011 23:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por TheoFerraz » Qui Nov 24, 2011 17:32
não é dificil.
Utilizando as formulas de area lateral, e volume, e igualando-as aos valores dados, voce obterá um sistema, observe.
o volume dum cilindro é SEMPRE :

(sendo h a altura)
e a area lateral será bem intuitiva!

lembrando que a area de um hexagono pode ser vista como a soma de 6 triangulos equiláteros! portanto
![{A}_{hexagono} = 6 \times \frac{{l}^{2}.\sqrt[]{3}}{4} {A}_{hexagono} = 6 \times \frac{{l}^{2}.\sqrt[]{3}}{4}](/latexrender/pictures/571ed2fd04293c8f3737f3ebe94fd145.png)
com isso voce já consegue fazer o exercicio. a base é um hexagono cujo tamanho da arestra é l... esse mesmo l será usado como base dos retangulos da area lateral.
Obs: Visualizando tudo fica mais facil. tente desenhar e dar nome para os lados (SEMPRE)
-
TheoFerraz
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Qua Abr 13, 2011 19:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Física
- Andamento: cursando
Voltar para Geometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (Geometria) Qual a altura do prisma descrito no exercício
por andersontricordiano » Qui Out 06, 2011 13:08
- 0 Respostas
- 2036 Exibições
- Última mensagem por andersontricordiano

Qui Out 06, 2011 13:08
Geometria
-
- Prisma Hexagonal
por Laryssa Rafaella » Sáb Mai 28, 2011 22:04
- 1 Respostas
- 8402 Exibições
- Última mensagem por carlosalesouza

Dom Mai 29, 2011 03:47
Geometria Plana
-
- [Geometria espacial] Prisma hexagonal
por acargo » Dom Out 23, 2011 19:13
- 2 Respostas
- 2888 Exibições
- Última mensagem por acargo

Qui Jan 05, 2012 10:51
Geometria Espacial
-
- Determine a área total e o volume do prisma Hexagonal
por andersontricordiano » Qui Nov 10, 2011 15:55
- 1 Respostas
- 3242 Exibições
- Última mensagem por MarceloFantini

Qui Nov 10, 2011 19:54
Geometria
-
- [Geometria Espacial] Questão sobre Prisma Hexagonal Regular
por passolarg0f » Qui Abr 19, 2012 21:42
- 0 Respostas
- 2516 Exibições
- Última mensagem por passolarg0f

Qui Abr 19, 2012 21:42
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.