Materiais sobre Cálculo.
Utilize a seção de pedidos para outros que não estejam disponíveis.
As fontes dos arquivos serão diversas e deverão ser citadas sempre que possível, mantendo totalmente os créditos dos respectivos autores.
Regras do fórum
- Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;
- Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".
Bons estudos!
por admin » Qui Mai 15, 2008 15:44
Sendo

uma função do segundo grau, temos:

Com

e

.
O objetivo é encontrar uma expressão que determine as raízes desta função.
Ou seja, quais os valores para

onde:

Portanto, o que de fato buscamos é "isolar" x nesta equação:

Vamos dividir por

os dois membros da equação.




Agora, subtrairemos

:


Antes de prosseguir, lembre-se de um quadrado perfeito, onde:

Proveniente da propriedade distributiva

.
Vamos "criar" um quadrado perfeito no primeiro membro da equação.
Para facilitar a visualização, vamos reescrever o quadrado perfeito com outras letras:

Se chamarmos

, assim:

Podemos somar e em seguida subtrair

, sem alterarmos a equação, pois


De modo que assim podemos destacar um quadrado perfeito:


Com o quadrado perfeito visualizado, vamos reescrever a equação:

Somando

nos dois membros:



Deixando o segundo membro com o mesmo denominador (m.m.c.):

Extraindo a raiz quadrada dos dois membros:

Aqui, cuidado, note que:

Pois como

está elevado ao quadrado e a raiz deve ser positiva, eis o papel do módulo: garantir que o resultado da raiz seja positivo, mesmo que

seja negativo.
Lembrando a definição de módulo:

Veja em um exemplo o papel e importância do módulo, com


De fato, pois:

Veja o que aconteceria se não utilizássemos o módulo:

Não deve ocorrer no conjunto dos números reais.
Após estas observações, vamos utilizar módulo na simplificação da raiz:

Separando as raízes do segundo membro, numerador e denominador:

Extraindo a raiz do denominador e novamente, o módulo aparece:

Igualmente, também podemos escrever assim:

E pela definição de módulo:

Subtraindo

dos dois membros:



(fórmula de Bhaskara)
Como nos reais o radicando desta raiz

deve sempre ser positivo, ele é freqüentemente avaliado (estudo de sinal), chamado de discriminante (Delta):


Portanto, as raízes de uma função do segundo grau

, são obtidas pela expressão:

Sendo que:
Se

, as duas raízes são reais e distintas;
Se

, há um par de raízes reais e iguais;
Se

, há um par de raízes complexas.
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
Voltar para Cálculo
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dedução de formula
por rodrigosoaresd » Ter Ago 14, 2012 14:30
- 1 Respostas
- 1523 Exibições
- Última mensagem por e8group

Ter Ago 14, 2012 15:34
Geometria Analítica
-
- Dedução de fórmula física
por useredu » Sex Set 02, 2016 11:55
- 2 Respostas
- 1831 Exibições
- Última mensagem por useredu

Qui Set 08, 2016 13:47
Equações
-
- Bhaskara
por Neperiano » Sex Out 31, 2008 20:57
- 1 Respostas
- 8803 Exibições
- Última mensagem por Tsmmakika

Sáb Set 12, 2015 05:18
Mensagens Matemáticas
-
- [artigo] círculo unitário e algumas relações trigonométricas
por admin » Ter Jun 03, 2008 17:03
- 1 Respostas
- 2852 Exibições
- Última mensagem por Neperiano

Sex Set 16, 2011 19:48
Geometria
-
- [Equação do 2º grau] Ajuda com resolução de bhaskara
por Everton_Win » Ter Mar 26, 2013 18:36
- 2 Respostas
- 2021 Exibições
- Última mensagem por Everton_Win

Ter Mar 26, 2013 22:50
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.