Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por Molina » Ter Mai 26, 2009 23:35
Um general tenta escolher um cozinheiro dentre 625 voluntários. Manda-os formar um quadrado com 25 linhas e 25 colunas. Manda sair o mais alto de cada linha e escolhe o mais baixo dentre eles. Depois, muda de idéia. Após regressarem aos seus respectivos lugares, manda sair o mais baixo de cada coluna e escolhe o mais alto dentre eles.
Sendo diferentes os dois cozinheiros escolhidos, qual deles é o mais alto?
Problema retirado de um mural do Centro de Matemática e Física da UFSC
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Molina » Sex Mai 29, 2009 00:33
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Cleyson007 » Sex Mai 29, 2009 11:20
Bom dia Molina!
Esse desafio é difícil hein..
Já encontrou resposta?
Estou tentando resolvê-lo, mas até agora não encontrei resposta
Qualquer coisa, comente no fórum, ok?
Estou curioso para saber a resposta.
Um abraço.

-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por Molina » Sáb Mai 30, 2009 15:17
Também nao sei a resposta.
As vezes acho que é um, outras vezes acho que é outro.
Abraços

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Marcampucio » Sáb Mai 30, 2009 16:02
Comentem, por favor.
O mais alto entre os mais baixos não deve ser mais baixo do que o mais baixo entre os mais altos?
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
-
Marcampucio
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Ter Mar 10, 2009 17:48
- Localização: São Paulo
- Formação Escolar: GRADUAÇÃO
- Área/Curso: geologia
- Andamento: formado
por Molina » Dom Mai 31, 2009 05:09
Marcampucio escreveu:Comentem, por favor.
O mais alto entre os mais baixos não deve ser mais baixo do que o mais baixo entre os mais altos?
Olá.
Teoricamente isto que você diz faz sentido sim.
Fiz alguns testes com um numero reduzido de "soldados" e deu isso mesmo que você falou.
Mas ainda não me convenci.
To procurando algum modelo que contrarie isso que você falou, ou seja que dê algo do tipo:
o mais baixo dentre os mais altos é menor (ou igual) ao mais alto dentre os mais baixos.
Abraços,

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Marcampucio » Dom Mai 31, 2009 13:51
Olá molina,
molina escreveu:Mas ainda não me convenci.
To procurando algum modelo que contrarie isso que você falou, ou seja que dê algo do tipo:
o mais baixo dentre os mais altos é menor (ou igual) ao mais alto dentre os mais baixos.
Abraços,

Se a frase em vermelho for verdadeira implica que o conjunto dos mais altos não é verdadeiro, ou completo. Ou de outro modo, significa que a intersecção do conjunto dos mais altos com o conjunto dos mais baixos não é o vazio. Haveria elementos que fossem ao mesmo tempo "mais altos e mais baixos".
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
-
Marcampucio
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Ter Mar 10, 2009 17:48
- Localização: São Paulo
- Formação Escolar: GRADUAÇÃO
- Área/Curso: geologia
- Andamento: formado
por Molina » Ter Jun 02, 2009 06:37
Bom dia.
Você tem razão. E como o enunciado diz Sendo diferentes os dois cozinheiros escolhidos acredito que é isso mesmo que você pensou.
Abraços e obrigado.
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Desafios Difíceis
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Pagamento à vista ou a prazo - qual o mais vantajoso?
por PeterHiggs » Sáb Jun 02, 2012 00:34
- 4 Respostas
- 4668 Exibições
- Última mensagem por PeterHiggs

Ter Jun 05, 2012 12:37
Matemática Financeira
-
- [Arranjos] - 24 pilotos, 3 deles brasileiros
por Alexander » Qui Abr 04, 2013 16:18
- 2 Respostas
- 4856 Exibições
- Última mensagem por Alexander

Sex Abr 05, 2013 10:19
Análise Combinatória
-
- [PRODUTOS NOTAVEIS] COMO SABER QUAIS DELES USAR
por FERNANDO MEDEIROS » Ter Mai 21, 2013 16:16
- 0 Respostas
- 979 Exibições
- Última mensagem por FERNANDO MEDEIROS

Ter Mai 21, 2013 16:16
Funções
-
- [Taxas Relacionadas] - Uma luz está no alto de um poste
por ajurycaba » Qua Mar 25, 2015 23:13
- 1 Respostas
- 1006 Exibições
- Última mensagem por Cleyson007

Sex Mar 27, 2015 11:34
Cálculo: Limites, Derivadas e Integrais
-
- Raciocínio lógico , nível de interpretação alto
por Jfagnerviana » Ter Jan 05, 2016 12:31
- 0 Respostas
- 1849 Exibições
- Última mensagem por Jfagnerviana

Ter Jan 05, 2016 12:31
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.