• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo de sin(x+y) UMA MANEIRA FÁCIL DE RESOLVER

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Cálculo de sin(x+y) UMA MANEIRA FÁCIL DE RESOLVER

Mensagempor Taah » Ter Mar 30, 2010 09:02

Calcule sin(x+y) em função de a e b, sabendo que o produto ab 0, que sinx + siny = a e que cosx + cosy = b

sen(x+y) = ?

Sabe-se que:
senx + senx = 2.sen[(x+y)]/2.cos[(x-y)]/2
cosx + cosy = 2.cos[(x+y)]/2.cos[(x-y)]/2

Dessa forma:
Sabendo que:
*senx + seny = a
*cosx + cosy = b

a = senx + senx = 2.sen[(x+y)/2].cos[(x-y)/2] ----->a = 2.sen[(x+y)/2].cos[(x-y)/2]
b = cosx + cosy = 2.cos[(x+y)/2].cos[(x-y)/2]------>b = 2.cos[(x+y)/2].cos[(x-y)/2]

Se o produto ab é diferente de zero, deduzimos que -----> a \neq 0
b \neq 0

Então podemos dividir a = 2.sen[(x+y)/2].cos[(x-y)/2] por b = 2.cos[(x+y)/2].cos[(x-y)/2]
Temos:

a = 2.sen[(x+y)/2].cos[(x-y)/2]/b = 2.cos[(x+y)/2].cos[(x-y)/2]
a/b = 2.sen[(x+y)/2].cos[(x-y)/2]/2.cos[(x+y)/2].cos[(x-y)/2]
a/b = sen[(x+y)/2]/cos[(x+y)/2]

Sabemos também que senx/cosx = tg
Portanto,
sen[(x+y)/2]/cos[(x+y)/2] = a/b -----> tg[(x+y)/2] = a/b

Por outro lado, sabe-se que:

sen \alpha =[ 2.tg\alpha/2]/[1 + tg²\alpha/2] (**)
Faça \alpha = x+y em (**)
sen(x+y) = 2.tg[(x+y)/2]/1 + tg²[(x+y)/2]
sen(x+y) = 2.[a/b]/1 + [(a/b)²]
sen(x+y) = 2. [a/b]/1 + a²/b²
sen(x+y) = 2. [a/b]/[b² + a²/b²]
sen(x+y) = [2a/b]/[b² + a²/b²]

Divisão de frações, multiplica a primeira pelo inverso da segunda:
sen(x+y) = [2a/b].[b²/a²+b²]
sen(x+y) = 2ab/a² + b²

RESPOSTA: 2ab/a² + b²
Taah
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sáb Mar 27, 2010 15:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Exatas
Andamento: cursando

Re: Cálculo de sin(x+y) UMA MANEIRA FÁCIL DE RESOLVER

Mensagempor paulo87 » Sáb Fev 19, 2011 12:26

velho, so uma dica, procura sobre Prostaféreses.
paulo87
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Fev 19, 2011 12:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Desafios Difíceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}