• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema matematicamente resolvivel

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Problema matematicamente resolvivel

Mensagempor stalone » Sex Dez 18, 2009 17:38

O problema é o seguinte :

Uma mãe é 21 anos mais velha que o filho.
Daqui a seis anos o filho terá uma idade 5 vezes menor que a da mãe.
Pergunta: Onde está o pai agora ?

Atenção à pergunta: Onde está o pai agora?
stalone
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Dez 18, 2009 16:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Computação
Andamento: formado

Re: Problema matematicamente resolvivel

Mensagempor Molina » Sáb Dez 19, 2009 13:43

Problema tradicional da matemática.

Muito legal e de fato matematicamente resolvivel!

Vou deixar mais um tempo para o pessoal que desconhece tentar.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Problema matematicamente resolvivel

Mensagempor Cleyson007 » Seg Dez 21, 2009 22:29

Boa noite!

O problema é muito interessante!

Vamos montar as equações do problema:

Idade atual da mãe: x anos

Idade atual do menino: y anos

Como a mãe é 21 anos mais velha que o filho: x=y+21

Passados os 06 anos: x+6 e y+6

Como a mãe é 5 vezes mais velha que o filho: x+6=5(y+6)

Resolvendo o sistema de equações:

Idade da criança: \frac{-3}{4} anos

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Problema matematicamente resolvivel

Mensagempor MarceloFantini » Seg Dez 21, 2009 22:33

O mais interessante é a conclusão decorrente do resultado. :lol:
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Desafios Difíceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.