Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por tenebroso » Qua Dez 18, 2013 17:46
1) OBSERVE O ESQUEMA ABAIXO, LEMBRANDO QUE, AS ALTURAS DOS ALUNOS DE UMA TURMA É COMPOSTA POR 50 ESTUDANTES.
ALTURA: 1,56; FREQUÊNCIA 12.
ALTURA: 1,68; FREQUÊNCIA 10.
ALTURA: 1,75; FREQUÊNCIA 8.
ALTURA: 1,80; FREQUÊNCIA 10.
ALTURA: 1,85; FREQUÊNCIA 10.
CHAMANDO Ma, A MÉDIA ARITMÉTICA DAS ALTURAS; Me, A MEDIANA DAS ALTURAS E Mo, A MODA DAS ALTURAS, PODE-SE AFIRMAR QUE:
A) Mo menor que Ma menor que Me
B) Me menor que Mo menor que Ma
c) Me menor que Ma menor que Mo
D) Mo menor que Me menor que Ma
E) Ma menor que Me menor que Mo
-
tenebroso
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Qua Dez 18, 2013 16:00
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: estudante
- Andamento: cursando
por Baltuilhe » Seg Abr 06, 2015 19:10
Boa tarde!
Calculando a média (Ma):

Calculando a mediana (Me):
Como temos 50 números temos dois termos medianos. A posição deles vale:

Temos 12 temos, mais 10, 22, mais 8, 30. Ou seja, os dois termos medianos valem 1,75, então, a mediana TAMBÉM valerá 1,75.
Calculando a moda(Mo):
A moda é o termo com maior frequência (moda bruta)
Então, moda (Mo) = 1,56
Temos, então:
Mo < Ma < Me (letra a)
-
Baltuilhe
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Dom Mar 24, 2013 21:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: formado
Voltar para Desafios Difíceis
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Desafio para determinar a data de entrega
por Eekhoorn » Qui Mar 05, 2009 12:35
- 2 Respostas
- 3755 Exibições
- Última mensagem por m0x0

Sáb Jul 23, 2011 17:41
Desafios Enviados
-
- Desafio Fácil para vocêis me ajudarem
por Jonatasskylinknot » Qui Fev 24, 2011 20:54
- 1 Respostas
- 3513 Exibições
- Última mensagem por Abelardo

Seg Mar 07, 2011 03:42
Desafios Fáceis
-
- [Matematica Financeira] Questão desafio
por CARLOS POVOAS » Qua Jun 19, 2013 00:35
- 0 Respostas
- 1722 Exibições
- Última mensagem por CARLOS POVOAS

Qua Jun 19, 2013 00:35
Matemática Financeira
-
- Livro: Matematica basica para ensino fundamental. pg. 55 ex1
por santiago alves » Sex Jul 08, 2011 08:46
- 2 Respostas
- 2692 Exibições
- Última mensagem por santiago alves

Sex Jul 08, 2011 10:46
Polinômios
-
- Livro: Matematica basica para ensino Superior. pg. 59 ex4
por santiago alves » Ter Jul 12, 2011 13:45
- 2 Respostas
- 2243 Exibições
- Última mensagem por santiago alves

Ter Jul 12, 2011 14:23
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.