1) OBSERVE O ESQUEMA ABAIXO, LEMBRANDO QUE, AS ALTURAS DOS ALUNOS DE UMA TURMA É COMPOSTA POR 50 ESTUDANTES.
ALTURA: 1,56; FREQUÊNCIA 12.
ALTURA: 1,68; FREQUÊNCIA 10.
ALTURA: 1,75; FREQUÊNCIA 8.
ALTURA: 1,80; FREQUÊNCIA 10.
ALTURA: 1,85; FREQUÊNCIA 10.
CHAMANDO Ma, A MÉDIA ARITMÉTICA DAS ALTURAS; Me, A MEDIANA DAS ALTURAS E Mo, A MODA DAS ALTURAS, PODE-SE AFIRMAR QUE:
A) Mo menor que Ma menor que Me
B) Me menor que Mo menor que Ma
c) Me menor que Ma menor que Mo
D) Mo menor que Me menor que Ma
E) Ma menor que Me menor que Mo




![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.