• Anúncio Global
    Respostas
    Exibições
    Última mensagem

O lenhador

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

O lenhador

Mensagempor admin » Sex Jul 20, 2007 15:16

Um lenhador remava regularmente num tranqüilo lago; súbito um peixe irrompeu à superfície bem à sua frente. Ele contou doze remadas até que sua canoa cruzasse pela primeira vez o círculo de ondulações que o peixe formara, e depois mais doze até sair das ondulações do outro lado do círculo. Algum tempo depois, ele se deu o trabalho de calcular a que distância dele (a quantas remadas) o peixe estivera no momento em que pulou, mas isso lhe foi muito difícil. Você conseguiria resolver o problema?
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: O lenhador

Mensagempor fbiochagas » Dom Abr 13, 2008 10:53

Fábio Sousa!
Você poderia mandar a resposta deste desáfio ao meu e-mail? fbiochagas@yahoo.com.br
Aguardo a tua resposta.
Abraço
Fábio Chagas
fbiochagas
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Nov 05, 2007 22:19
Área/Curso: Estudante
Andamento: cursando

Re: O lenhador

Mensagempor admin » Dom Abr 13, 2008 18:17

Olá, Fábio Chagas!

Considero que a dificuldade deste exercício está em dois aspectos: a abstração para representá-lo geometricamente e a escolha de um cálculo que leve à resolução.

Outros comentários sobre a interpretação do enunciado:
A unidade de "distância" adotada é a "remada".
E a informação de que o lenhador "remava regularmente" significa então que a velocidade é constante. Neste caso, vale ressaltar que a velocidade é a variação das remadas no tempo.
E este trecho: "um peixe irrompeu à superfície bem à sua frente", em outras palavras, significa que o ponto do peixe está alinhado com o trajeto do lenhador.
E este outro: "tranqüilo lago", transmite a idéia de que a propagação das ondulações também é constante.


Pois bem, após estas considerações, o primeiro passo então é fazer uma representação geométrica, por exemplo, eu fiz esta:
desafio_lenhador.jpg
desafio_lenhador.jpg (21.23 KiB) Exibido 3200 vezes

O lenhador vai no sentido AC.
Sendo que o ponto A representa a posição do lenhador no exato momento inicial de formação das ondulações.
Conforme o enunciado, o ponto O é a posição de encontro com o primeiro círculo c1 formado.
E o ponto C é a posição de saída do círculo correspondente c2.
O raio do círculo c1 é r.

A medida da distância BC assinalada como 12-2r é proveniente da diferença OC-OB (OC menos o diâmetro de c1).

Citei inicialmente a escolha do cálculo como dificuldade pois, unindo alguns pontos das intersecções das circunferências com o eixo x, podemos criar vários triângulos, alguns triângulos retângulos inclusive. Então, é natural buscarmos uma resolução geométrica, por exemplo, com semelhança de triângulos, teorema de Pitágoras etc.

Mas, é fato que o enunciado estabelece uma relação entre as remadas e a propagação das ondas.
Sendo assim, buscando simplificar, relacionei as remadas com o raio de c1, através de uma regra de três.

A idéia:
\left\{
\begin{matrix}
   AO & \;\;\; & PB \\ 
   OC & \;\;\; & BC 
\end{matrix}
\right.
Em palavras, esta regra de três representa o seguinte:
O lenhador percorre AO, proporcionalmente à propagação PB. Asim como percorre OC, proporcionalmente à propagação BC.

A conta:
\left\{
\begin{matrix}
   12 & \;\;\; & r \\ 
   12 & \;\;\; & 12-2r 
\end{matrix}
\right.

12r = 12(12-2r)

r = 12-2r

r + 2r = 12

3r = 12

r = 4

E como procuramos a distância AP, temos:
AP = 12+r

AP = 12+4

AP = 16 remadas


Qualquer comentário será bem-vindo!
Até mais.
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado


Voltar para Desafios Difíceis

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59