Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por Taah » Ter Mar 30, 2010 09:02
Calcule sin(x+y) em função de a e b, sabendo que o produto ab 0, que sinx + siny = a e que cosx + cosy = b
sen(x+y) = ?
Sabe-se que:
senx + senx = 2.sen[(x+y)]/2.cos[(x-y)]/2
cosx + cosy = 2.cos[(x+y)]/2.cos[(x-y)]/2
Dessa forma:
Sabendo que:
*
senx + seny =
a*
cosx + cosy =
ba = senx + senx = 2.sen[(x+y)/2].cos[(x-y)/2] ----->a = 2.sen[(x+y)/2].cos[(x-y)/2]
b = cosx + cosy = 2.cos[(x+y)/2].cos[(x-y)/2]------>b = 2.cos[(x+y)/2].cos[(x-y)/2]
Se o produto
ab é diferente de zero, deduzimos que -----> a

0
b

0
Então podemos dividir
a = 2.sen[(x+y)/2].cos[(x-y)/2] por
b = 2.cos[(x+y)/2].cos[(x-y)/2] Temos:
a = 2.sen[(x+y)/2].cos[(x-y)/2]/b = 2.cos[(x+y)/2].cos[(x-y)/2]
a/b = 2.sen[(x+y)/2].cos[(x-y)/2]/2.cos[(x+y)/2].cos[(x-y)/2]
a/b = sen[(x+y)/2]/cos[(x+y)/2]
Sabemos também que senx/cosx = tg
Portanto,
sen[(x+y)/2]/cos[(x+y)/2] = a/b -----> tg[(x+y)/2] = a/b
Por outro lado, sabe-se que:
sen

=[ 2.tg

/2]/[1 + tg²

/2] (**)
Faça

= x+y em (**)
sen(x+y) = 2.tg[(x+y)/2]/1 + tg²[(x+y)/2]
sen(x+y) = 2.[a/b]/1 + [(a/b)²]
sen(x+y) = 2. [a/b]/1 + a²/b²
sen(x+y) = 2. [a/b]/[b² + a²/b²]
sen(x+y) = [2a/b]/[b² + a²/b²]
Divisão de frações, multiplica a primeira pelo inverso da segunda:
sen(x+y) = [2a/b].[b²/a²+b²]
sen(x+y) = 2ab/a² + b²
RESPOSTA: 2ab/a² + b²
-
Taah
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sáb Mar 27, 2010 15:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências Exatas
- Andamento: cursando
por paulo87 » Sáb Fev 19, 2011 12:26
velho, so uma dica, procura sobre Prostaféreses.
-
paulo87
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Fev 19, 2011 12:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Desafios Difíceis
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Alguém poderia me ensinar um método fácil para resolver isso
por Dankaerte » Qui Ago 27, 2009 14:38
- 2 Respostas
- 2765 Exibições
- Última mensagem por Elcioschin

Qui Ago 27, 2009 20:04
Estatística
-
- PARECE FÁCIL - Cálculo de sin(x+y)
por Taah » Dom Mar 28, 2010 13:39
- 6 Respostas
- 4221 Exibições
- Última mensagem por Taah

Seg Mar 29, 2010 16:36
Desafios Difíceis
-
- Existe alguma maneira de equacionar os problemas !
por LuizCarlos » Ter Ago 16, 2011 15:34
- 2 Respostas
- 2266 Exibições
- Última mensagem por DanielFerreira

Dom Abr 01, 2012 17:09
Álgebra Elementar
-
- Maneira mais eficiente para multiplicacao de fracoes algeb.
por lucas7 » Dom Fev 20, 2011 07:54
- 7 Respostas
- 3640 Exibições
- Última mensagem por lucas7

Seg Fev 21, 2011 16:38
Álgebra Elementar
-
- [Limite] Gostaria de saber se posso operar dessa maneira.
por ravi » Ter Out 09, 2012 10:50
- 5 Respostas
- 3540 Exibições
- Última mensagem por LuizAquino

Qui Out 11, 2012 23:37
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.