Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por victoreis1 » Dom Out 24, 2010 16:14
Essa questão caiu na terceira fase da obm desse ano, do nível 3:
Encontre todos os pares de inteiros positivos

tais que

Já tentei fazer por congruência modular, não deu certo..
alguém tem alguma ideia?
-
victoreis1
- Usuário Dedicado

-
- Mensagens: 37
- Registrado em: Qua Out 20, 2010 14:49
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por VtinxD » Ter Out 26, 2010 23:29
Tive uma ideia aki mas não sei se esta certo.
Pela congruencia modular:

,perceba que se" b" for impar "a" é impar e se "b "for par "a" é par.
Tendo isto em mente voltamos para a igualdade:
{3}^{a}-2{b}^{2}=1
Se "a" for impar teremos:a=2n+1 e b=2k+1
![\left[ \sqrt[]{3}{(3)}^{n}-\sqrt[]{2}(2k+1)\right].\left[\sqrt[]{3}{(3)}^{n}+\sqrt[]{2}(2k+1) \right]=1 \left[ \sqrt[]{3}{(3)}^{n}-\sqrt[]{2}(2k+1)\right].\left[\sqrt[]{3}{(3)}^{n}+\sqrt[]{2}(2k+1) \right]=1](/latexrender/pictures/9e7beedbb70d3f969bdde73a596556d5.png)
e como n e k são naturais essa equação é impossivel.
Utilizando a mesma tecnica para "a" par: a=2g e b=2r
![\left[{(3)}^{g}-\sqrt[]{2}(2r)\right].\left[{(3)}^{g}+\sqrt[]{2}(2r) \right]=1 \left[{(3)}^{g}-\sqrt[]{2}(2r)\right].\left[{(3)}^{g}+\sqrt[]{2}(2r) \right]=1](/latexrender/pictures/4cb7d25d03dd7bddf782a280b40af6ed.png)
que por acaso a unica solução é a trivial.
Espero ter ajudado(e certo hehe).
-
VtinxD
- Usuário Parceiro

-
- Mensagens: 64
- Registrado em: Dom Ago 15, 2010 18:29
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Bacharelado em Matematica
- Andamento: cursando
por victoreis1 » Qua Out 27, 2010 14:13
no primeiro caso, com a e b ímpares e a=2n+1 e b=2k+1, note que, se

, temos:

daí temos que

(visto que k deve ser positivo) e

e

.
Veja que sim, é possível que existam soluções para a e b ímpares; o problema é, esta é a única solução para a e b ímpares, ou há outras? é isso que não sei dizer..
-
victoreis1
- Usuário Dedicado

-
- Mensagens: 37
- Registrado em: Qua Out 20, 2010 14:49
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por VtinxD » Qua Out 27, 2010 16:33
Tenho outra ideia,o teorema util de fermat:

, como (p-1) é sempre par,para todo primo maior que 2, então "b=2k" mas o que é impossível dado que para

b=p. Tornando assim impossível "b" par ,para todo a=(p-1) maior do que 2.
Agora espero estar certo.
Só falta uma parte agora, já volto.
-
VtinxD
- Usuário Parceiro

-
- Mensagens: 64
- Registrado em: Dom Ago 15, 2010 18:29
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Bacharelado em Matematica
- Andamento: cursando
por al-mahed » Sáb Dez 11, 2010 21:55
Olá, primeiro suponha a par

, assim

.
como

, então um fator 2 de um cancela o 2 em 2b^2, como nenhnum outro fator divide ambos os termos, teremos que um deles é um quadrado par, já que um deles é divisível por dois, e o outro por 4, e nenhum quadrado par pode ser incongruente a 4
digamos que

então uam solução é (2,2), pois como 3 é primo ele não pode ser decomposto em dois fatores distintos c-1 e c+1, logo o menor é igual a 1
agora digamos que

, mas

, impossível para c inteiro, veja que k deve ser par pois

se e somente se 3^k é da forma 4n+1, pois se k for ímpar 3^k será a forma 4n+3, e 4n+3-1 não é divisível por 4
logo a única solução com a sendo par é (2,2).
para a ímpar o buraco é mais embaixo

, então

assim

há duas soluções triviais k = 0 (a=1) e b = 1, ou a = 0 e b = 0, e ñ há inteiro k, mas suponha que k>0
como

b é ímpar

já que

é um quadrado perfeito ímpar, ele deve ser da forma

, logo

isso significa que

deve ser triangular, já que

é triangular
uma solução em que ambos são triangulares é quando

para completar a prova indo nessa direção teria que mostrar que não há outras soluções tal que

seja triangular e

seja uma potência de 3.
-
al-mahed
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Dez 11, 2010 21:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: filosofia
- Andamento: formado
Voltar para Desafios Difíceis
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- como derivar até a terceira ordem
por PORTER » Qua Dez 10, 2014 09:52
- 1 Respostas
- 1632 Exibições
- Última mensagem por Cleyson007

Qua Dez 10, 2014 10:38
Cálculo: Limites, Derivadas e Integrais
-
- dúvida, derivar seno e cosseno até a terceira ordem
por PORTER » Qui Dez 11, 2014 08:10
- 1 Respostas
- 1341 Exibições
- Última mensagem por adauto martins

Sex Dez 12, 2014 11:34
Cálculo: Limites, Derivadas e Integrais
-
- Planos de Fase
por marinalcd » Seg Mar 17, 2014 13:19
- 0 Respostas
- 2107 Exibições
- Última mensagem por marinalcd

Seg Mar 17, 2014 13:19
Cálculo: Limites, Derivadas e Integrais
-
- Matrizes UFBA 2ª Fase
por danilooliver » Dom Jan 13, 2013 20:53
- 3 Respostas
- 3613 Exibições
- Última mensagem por Russman

Dom Jan 13, 2013 21:39
Matrizes e Determinantes
-
- [Polinômios] Prova da fuvest 2ª fase
por vlopagliuca » Qua Dez 12, 2012 15:35
- 1 Respostas
- 2742 Exibições
- Última mensagem por young_jedi

Qua Dez 12, 2012 21:14
Polinômios
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.