Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por joaofonseca » Sáb Mar 03, 2012 20:31
Num saco existem 15 bolas.Cinco verdes, cinco amarelas e cinco brancas.As bolas da mesma cor estão numeradas de 1 a 5.
Agora suponha que no saco estão algumas das 15 bolas.Nestas novas condições, uma bola é retirada do saco.Sabemos que:
-a probabilidade de a bola retirada ser amarela é 50%
-a probabilidade de a bola retirada ter o número 1 é 25%
-a probabilidade de a bola retirada ser amarela ou ter o numero 1 é 62,5%
Prove que a bola amarela com o numero 1 está no saco.
-
joaofonseca
- Colaborador Voluntário

-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Sáb Mar 03, 2012 22:31
joaofonseca escreveu:Num saco existem 15 bolas.Cinco verdes, cinco amarelas e cinco brancas.As bolas da mesma cor estão numeradas de 1 a 5.
Agora suponha que no saco estão algumas das 15 bolas.Nestas novas condições, uma bola é retirada do saco.Sabemos que:
-a probabilidade de a bola retirada ser amarela é 50%
-a probabilidade de a bola retirada ter o número 1 é 25%
-a probabilidade de a bola retirada ser amarela ou ter o numero 1 é 62,5%
Prove que a bola amarela com o numero 1 está no saco.
Sejam os seguintes eventos:
A -- a bola é amarela;
N -- a bola tem número 1.
Dos conhecimentos sobre probabilidade, sabemos que:

Substituindo os dados do exercício, temos que:


Ou seja, a probabilidade da bola retirada ser amarela e ter o número 1 é igual a 12,5%. Como essa probabilidade é diferente de 0, temos que a bola amarela com o número 1 está no saco.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por fraol » Sáb Mar 03, 2012 23:10
De fato, como o professor demonstrou,

que é diferente de 0.
Com isso a probabilidade de que uma bola retirada seja Amarela e tenha o número 1 é de 12,5%.
Por outro lado se tivermos, por exemplo oito bolas no saco, quatro serão amarelas (50%) , digamos que numeradas de 2 a 5, e duas terão o número 1 (25%), digamos que seja uma verde e outra branca.
Eu havia pensado um pouco nesse problema e acho não há como provar propriamente o que foi pedido.
O que vocês acham?
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por LuizAquino » Sáb Mar 03, 2012 23:40
fraol escreveu:De fato, como o professor demonstrou,

que é diferente de 0.
Com isso a probabilidade de que uma bola retirada seja Amarela e tenha o número 1 é de 12,5%.
Por outro lado se tivermos, por exemplo oito bolas no saco, quatro serão amarelas (50%) , digamos que numeradas de 2 a 5, e duas terão o número 1 (25%), digamos que seja uma verde e outra branca.
Eu havia pensado um pouco nesse problema e acho não há como provar propriamente o que foi pedido.
O que vocês acham?
O seu raciocínio tem um furo. Qual é a probabilidade da bola retirada ser amarela ou ter o número 1?
Você tem que armar um exemplo na qual essa probabilidade seja 62,5% (como informa no exercício), mas sem que haja a bola amarela de número 1.
No exemplo que você deu, temos que:
-- 4 bolas amarelas: com números de 2 até 5;
-- 1 bola verde: com o número 1;
-- 1 bola branca: com o número 1;
Você ainda precisa completar esse exemplo informando mais 2 bolas (já que o seu total era de 8). Agora tente completar de modo que aquela última probabilidade seja 62,5%, mas sem que haja a bola amarela de número 1.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por fraol » Sáb Mar 03, 2012 23:56
Tem razão, como sempre aliás.
Nesse caso 12,5%,

, do saco de oito bolas deveria ser de bolas amarelas e com o número 1. Ou seja uma bola. Então está provado.
Grato.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por Guill » Sáb Mar 17, 2012 14:00
Podemos tirar as seguintes informações:
* Temos 3 bolas com o número 1 escrito.
* Como a probabilidade de retirar uma bola amarela do saco é 50%, metade das bolas desse saco devem ser amarelas e portanto, não temos mais que 10 bolas no saco.
* Como a probabilidade de retirar uma bola com número 1 do saco é 25%, existem bolas com número 1 dentro do saco.
Agora, observe que a probabilidade de retirar uma bola amarela ou com número 1 do saco é 62,5% = 50% + 12,5%. Mas o correto seria que 75% fosse a probabilidade, o que não ocorre porque o número é menor. Isso quer dizer que existe um encontro, ou seja, existe uma bola que possui as duas características ao mesmo tempo, fazendo com que o número de amostras diminua.
Isso prova.
-

Guill
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Dom Jul 03, 2011 17:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Desafios Médios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Bola de beisebol
por Cleyson007 » Qua Nov 07, 2012 16:55
- 7 Respostas
- 6755 Exibições
- Última mensagem por MarceloFantini

Qui Nov 08, 2012 17:00
Física
-
- Lançamento de uma bola
por Cleyson007 » Sex Nov 09, 2012 20:25
- 2 Respostas
- 1701 Exibições
- Última mensagem por Cleyson007

Sex Nov 09, 2012 22:44
Física
-
- Queda de uma bola em Progressão
por Carolziiinhaaah » Qua Jun 16, 2010 12:02
- 1 Respostas
- 1600 Exibições
- Última mensagem por Elcioschin

Qua Jun 16, 2010 13:38
Progressões
-
- [Limites] em uma bola aberta
por Marcos07 » Seg Jun 30, 2014 01:34
- 1 Respostas
- 1392 Exibições
- Última mensagem por e8group

Seg Jun 30, 2014 02:36
Cálculo: Limites, Derivadas e Integrais
-
- Será que esta relação geométrica esta errada?
por Guga1981 » Qua Ago 29, 2018 18:51
- 5 Respostas
- 16883 Exibições
- Última mensagem por Gebe

Sáb Set 01, 2018 22:27
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.