• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Desafio da Escada Rolante

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Desafio da Escada Rolante

Mensagempor Molina » Qui Abr 23, 2009 01:24

Um amante da matemática deseja descobrir a quantidade de degraus que são visíveis numa escada rolante em pleno movimento. Para solucionar isto, foi feito o seguinte procedimento: Duas mulheres começaram a subir, no mesmo momento (juntas), a escada; uma subindo um degrau de cada vez enquanto que a outra subia dois degraus de cada vez. Por fim, ao chegar ao topo, a primeira mulher contou o total de 21 degraus enquanto a outra, 28 degraus.

Apenas com esses dados o amante da matemática conseguiu responder o problema.

Quantos degraus são visíveis nessa escada rolante?

Lembrando que o nível do desafio é relativo. Por isso classifiquei-o como mediano

:idea:
*-)
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Desafio da Escada Rolante

Mensagempor Neperiano » Sex Abr 24, 2009 20:11

Ola

Essa questão é muito trivial.

Nos poderiamos dizer que tem 28 porque a mulher ando 28 degraus, mas tem a velocidade contraria do elevador que atrapalha.

Poderiamos dizer que é 21 pois outra mulher foi de 2 em 2, e poderiamos considerar que ela ando de 1 e 1, por causa da força contraria da escada rolante.

Mas acredito que a verdadeira resposta seja algo em torno de 14 degraus.

Eu entendi que a diferença de uma escada para outra x 2 seria a resposta, mas sinceramente foi soh um palpite.

Abraços
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Desafio da Escada Rolante

Mensagempor Molina » Sex Abr 24, 2009 20:39

Maligno.. Lembre-se que a é apenas UMA escada.

=)
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Desafio da Escada Rolante

Mensagempor Neperiano » Sex Abr 24, 2009 21:04

Ola

Desculpe Molina me expressei mal.

A diferença da duas mulheres subindo a escada rolante... Então

Abraços
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Desafio da Escada Rolante

Mensagempor rafagondi » Sáb Abr 25, 2009 16:53

Eu tentei resolver o problema, mas acho que o interpretei errado =/.
Eu consiferei que as mulheres não contavam os degraus em que pisavam.
Cheguei a conclusão de que elas andaram 42 ou 43 degraus.
Imagem

Mas como não tenho a velocidade com que a escada anda, ou a velocidade com que elas andaram, ou se a velocidade em que elas andaram e diferente. Enfim, o meu problema seu todo errado =/.
________________________________________________
Rafael Agondi - Física/Matemática Bacharelado UNICAMP
Avatar do usuário
rafagondi
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Abr 23, 2009 21:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Física Licenciatura - UNICAMP
Andamento: cursando

Re: Desafio da Escada Rolante

Mensagempor ginrj » Dom Jun 07, 2009 14:54

encontrei 26 :S, correto?
Os números governam o Universo
ginrj
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Sex Mar 06, 2009 18:28
Localização: Rio de Janeiro
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Pré.Militar
Andamento: cursando


Voltar para Desafios Médios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?