Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por Molina » Qui Abr 23, 2009 01:24
Um amante da matemática deseja descobrir a quantidade de degraus que são visíveis numa escada rolante em pleno movimento. Para solucionar isto, foi feito o seguinte procedimento: Duas mulheres começaram a subir, no mesmo momento (juntas), a escada; uma subindo um degrau de cada vez enquanto que a outra subia dois degraus de cada vez. Por fim, ao chegar ao topo, a primeira mulher contou o total de 21 degraus enquanto a outra, 28 degraus.
Apenas com esses dados o amante da matemática conseguiu responder o problema.
Quantos degraus são visíveis nessa escada rolante?
Lembrando que o nível do desafio é relativo. Por isso classifiquei-o como mediano

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Neperiano » Sex Abr 24, 2009 20:11
Ola
Essa questão é muito trivial.
Nos poderiamos dizer que tem 28 porque a mulher ando 28 degraus, mas tem a velocidade contraria do elevador que atrapalha.
Poderiamos dizer que é 21 pois outra mulher foi de 2 em 2, e poderiamos considerar que ela ando de 1 e 1, por causa da força contraria da escada rolante.
Mas acredito que a verdadeira resposta seja algo em torno de 14 degraus.
Eu entendi que a diferença de uma escada para outra x 2 seria a resposta, mas sinceramente foi soh um palpite.
Abraços
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por Molina » Sex Abr 24, 2009 20:39
Maligno.. Lembre-se que a é apenas UMA escada.
=)
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Neperiano » Sex Abr 24, 2009 21:04
Ola
Desculpe Molina me expressei mal.
A diferença da duas mulheres subindo a escada rolante... Então
Abraços
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por rafagondi » Sáb Abr 25, 2009 16:53
Eu tentei resolver o problema, mas acho que o interpretei errado =/.
Eu consiferei que as mulheres não contavam os degraus em que pisavam.
Cheguei a conclusão de que elas andaram 42 ou 43 degraus.

Mas como não tenho a velocidade com que a escada anda, ou a velocidade com que elas andaram, ou se a velocidade em que elas andaram e diferente. Enfim, o meu problema seu todo errado =/.
________________________________________________
Rafael Agondi - Física/Matemática Bacharelado UNICAMP
-

rafagondi
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Abr 23, 2009 21:18
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física Licenciatura - UNICAMP
- Andamento: cursando
por ginrj » Dom Jun 07, 2009 14:54
encontrei 26 :S, correto?
Os números governam o Universo
-
ginrj
- Usuário Dedicado

-
- Mensagens: 37
- Registrado em: Sex Mar 06, 2009 18:28
- Localização: Rio de Janeiro
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Pré.Militar
- Andamento: cursando
Voltar para Desafios Médios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Volume da Escada
por Joana Gabriela » Seg Ago 02, 2010 15:14
- 1 Respostas
- 4364 Exibições
- Última mensagem por MarceloFantini

Seg Ago 09, 2010 06:29
Geometria Espacial
-
- Forma Escada Reduzida por Linhas
por ricardotdai » Seg Abr 19, 2010 03:24
- 2 Respostas
- 4371 Exibições
- Última mensagem por ricardotdai

Ter Abr 20, 2010 01:25
Matrizes e Determinantes
-
- Desafio
por Guarinense » Sex Nov 10, 2017 22:25
- 0 Respostas
- 5650 Exibições
- Última mensagem por Guarinense

Sex Nov 10, 2017 22:25
Teoria dos Números
-
- Desafio dos Dez Pontos
por Molina » Sáb Jul 12, 2008 00:02
- 6 Respostas
- 5290 Exibições
- Última mensagem por admin

Dom Jul 13, 2008 17:00
Desafios Fáceis
-
- Desafio de lógica
por Twister » Qua Ago 13, 2008 21:46
- 10 Respostas
- 10019 Exibições
- Última mensagem por andymath

Qua Mar 31, 2010 19:14
Desafios Enviados
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.