• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Todo número negativo é ímpar

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Todo número negativo é ímpar

Mensagempor alexandre32100 » Qui Ago 19, 2010 14:53

"Todo número negativo é ímpar."
Para provar a afirmativa, começarei admitindo que há um número negativo par e então, chegarei a um absurdo.
Tome o menor número par negativo e chame-o de a. Logicamente, o número 2a é par e menor que a (deve-se lembrar que está se lidando com número negativos!). Um absurdo, afinal foi definido inicialmente que a é o menor par negativo. \square

Onde está a "trapaça" desta prova?
alexandre32100
 

Re: Todo número negativo é ímpar

Mensagempor Elcioschin » Qui Ago 19, 2010 17:57

O absurdo é a frase:

Tome o MENOR número par negativo ----> Este número deve supostamente ser - 2

Acontece que este número é o MAIOR número par negativo. Por exemplo - 2 > - 4

Isto acontece porque, para os negativos, quanto MAIOR o módulo do número, MENOR o valor do número
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Todo número negativo é ímpar

Mensagempor Molina » Qui Ago 19, 2010 22:10

Boa noite, Alexandre.

Pra mim o erro está em assumir que a é o menor negativo par, pois o absurdo que você chega contraria isso.

Caso sua questão fosse verdade, poderia escrever uma deste tipo:

"Todo número negativo é par."
Para provar a afirmativa, começarei admitindo que há um número negativo ímpar e então, chegarei a um absurdo.
Tome o menor número ímpar negativo e chame-o de b. Logicamente, o número 3b é ímpar e menor que b (deve-se lembrar que está se lidando com número negativos!). Um absurdo, afinal foi definido inicialmente que b é o menor ímpar negativo.



Logo pela sua questão Nenhum número negativo é par e pela minha Nenhum número negativo é ímpar. Afinal, o que então são os negativos?
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Todo número negativo é ímpar

Mensagempor paulo87 » Sáb Fev 19, 2011 12:15

molina, so um obs.. eh q nem todo numero multiplicado por 3 é impar... e eu acho q essa afirmação é errada, pois foi adotada uma definição errada de infinito.
paulo87
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Fev 19, 2011 12:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Todo número negativo é ímpar

Mensagempor LuizAquino » Sáb Fev 19, 2011 13:34

alexandre32100 escreveu:Onde está a "trapaça" desta prova?

A "trapaça" está em admitir que o conjunto P = \{2n \,|\, n \in \mathbb{Z} \} possui um menor elemento, o que é falso. O conjunto P é ilimitado, assim como \mathbb{Z}.

paulo87 escreveu:molina, so um obs.. eh q nem todo numero multiplicado por 3 é impar...

Note que o Molina assumiu que b é ímpar, portanto 3b é ímpar também. O triplo de todo número ímpar também é ímpar.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Desafios Médios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?