• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Probabilidade] peças dentro do padrão em três lotes

[Probabilidade] peças dentro do padrão em três lotes

Mensagempor leandrocf » Sex Jul 15, 2016 12:56

Olá, estou tendo dificuldade para a realização do seguinte exercício:

"Considere três lotes de 20 peças cada. O número de peças dentro do padrão no primeiro, segundo e terceiro lote são, respectivamente, 20, 15 e 10. De um lote escolhido ao acaso, retira-se uma peça aleatoriamente e verifica-se que está dentro do padrão. Devolve-se a peça ao lote e efetua-se uma nova retirada do mesmo lote e verifica-se que a segunda peça também está dentro do padrão.
a) Qual a probabilidade das duas peças retiradas estarem dentro do padrão?
b)Qual a probabilidade das peças terem sido retiradas do terceiro lote?
"
Tenho aqui a solução que foi apresentada, contudo não entendi o que foi realizado:

a)
P(P1) = 1; P(P2) = 3/4; P(P3) = 1/2
P = (1/3)(P(P1))^2 + (1/3)(P(P2))^2 + (1/3)(P(P3))^2
P = 29/48

Não entendi qual lógica que ele está usando com esses termos ao quadrado, qual fórmula!
Consequentemente não entendi a b)

b)
P(P|3° lote) = 1/4
P(P|2° lote) = 9/16
P(P|1° lote) = 1

P(3° lote|P) = (P(P| 3° lote)/P(P)) * P(3° lote) = 4/29
Agradeceria se alguém pudesse me ajudar a entender :-D
leandrocf
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Jul 15, 2016 12:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando

Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}