Eu encontrei que a possibilidade dos fatos ocorrerem em anos consecutivos seria
e a probabilidade de os roubos ocorrerem em endereços diferentes seria
. Mas não dá o resultado correto depois da multiplicação das probabilidades.Questão: A comparação dos índices de criminalidade, nos últimos três anos, entre duas Áreas
Integradas de Segurança Pública (AISP) da capital – que incluem nove bairros, entre eles
o Costa Azul e a Pituba – aponta para uma cobertura policial militar desigual e abaixo do
que é recomendado pela Organização das Nações Unidas (ONU). [...] (ÁREA, 2012,
p. A 4).
Considerando-se os dados expostos no infográfico, referentes ao número de veículos roubados a
cada ano, e que uma pessoa que morava no Costa Azul se mudou para a Pituba e teve dois carros
roubados na chegada em casa, no período de 2009 a 2011, então a probabilidade desse fato ter
ocorrido em anos consecutivos e cada roubo em um endereço diferente é de, aproximadamente:
RESP: 22%


![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.