• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Estatística, Combinatória e Probabilidade

Estatística, Combinatória e Probabilidade

Mensagempor cardosor23 » Qua Abr 18, 2012 18:53

Boas,

Alguém me pode ajudar a resolver este problema?

Seja \Omega um espaço de resultados e B um acontecimento tal que P(B) > 0.
Mostre que para qualquer acontecimento A tem-se:

P(A|B) + P(\Omega \ A|B) = 1

Obrigado.
cardosor23
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Mar 26, 2012 19:26
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Informática
Andamento: cursando

Re: Estatística, Combinatória e Probabilidade

Mensagempor fraol » Qua Abr 18, 2012 23:16

P( \Omega \ A|B) é o evento complementar de P(A|B), então a expressão pode ser escrita assim:

P(A|B) + (P(A|B))^c =

P(A|B) + ( 1 - P(A|B) ) = ( pela definição de evento complementar )

P(A|B) + 1 - P(A|B) = 1 .

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.