• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Combinatória e probabilidade] Questão UCSAL

[Combinatória e probabilidade] Questão UCSAL

Mensagempor danielleecb » Seg Mai 07, 2012 03:21

São duas questões em uma, na verdade, já que as duas dependem do mesmo texto. Se alguém puder me ajudar a entender como se resolve, ficarei muito grata. Já tentei de mil e uma maneiras , sem conseguir :\

"(UCSAL) O enunciado abaixo refere-se às questões de número 09 e 10.
Um jogo é formado por 52 fichas, divididas em quatro grupos de cores distintas - vermelha, azul, verde e amarela - e, em cada grupo, as fichas são enumeradas de 1 a 13.

09. De quantos modos pode-se distribuir aleatoriamente um grupo de 5 fichas a um jogador, sendo que três delas estejam marcadas com o número 8 e as demais com números iguais?
a)48 b)96 c)192 d)288 e)570

10. A probabilidade de um jogador receber aleatoriamente 4 fichas, sendo duas verdes e duas amarelas, é?"

O gabarito diz que na questão 09 dá letra 'd', 288 e na 10 dá \frac{468}{20825}
danielleecb
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Set 26, 2011 17:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: Pré-vestibular
Andamento: cursando

Re: [Combinatória e probabilidade] Questão UCSAL

Mensagempor Fabiano Vieira » Ter Mai 08, 2012 19:12

danielleecb escreveu:09. De quantos modos pode-se distribuir aleatoriamente um grupo de 5 fichas a um jogador, sendo que três delas estejam marcadas com o número 8 e as demais com números iguais?
a)48 b)96 c)192 d)288 e)570


No jogo, sempre teremos para cada número 4 fichas(4 fichas de n° 8, 4 fichas de n° 7, 4 fichas de número n° 6, e assim por diante). Temos então:

\frac{1}{4*}\frac{2}{3*}\frac{3}{2*}\frac{4}{4*}\frac{5}{3*}=288

Nesse exemplo, de 1 a 3 são as possibilidades para sair 3 fichas de número 8, e de 4 a 5 para as demais serem iguais.
Fabiano Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Abr 16, 2012 23:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistema de Informação
Andamento: cursando

Re: [Combinatória e probabilidade] Questão UCSAL

Mensagempor danielleecb » Ter Mai 15, 2012 12:14

Obrigada :D
danielleecb
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Set 26, 2011 17:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: Pré-vestibular
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59