por danielleecb » Seg Mai 07, 2012 03:21
São duas questões em uma, na verdade, já que as duas dependem do mesmo texto. Se alguém puder me ajudar a entender como se resolve, ficarei muito grata. Já tentei de mil e uma maneiras , sem conseguir :\
"(UCSAL) O enunciado abaixo refere-se às questões de número 09 e 10.
Um jogo é formado por 52 fichas, divididas em quatro grupos de cores distintas - vermelha, azul, verde e amarela - e, em cada grupo, as fichas são enumeradas de 1 a 13.
09. De quantos modos pode-se distribuir aleatoriamente um grupo de 5 fichas a um jogador, sendo que três delas estejam marcadas com o número 8 e as demais com números iguais?
a)48 b)96 c)192 d)288 e)570
10. A probabilidade de um jogador receber aleatoriamente 4 fichas, sendo duas verdes e duas amarelas, é?"
O gabarito diz que na questão 09 dá letra 'd', 288 e na 10 dá

-
danielleecb
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Seg Set 26, 2011 17:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Pré-vestibular
- Andamento: cursando
por Fabiano Vieira » Ter Mai 08, 2012 19:12
danielleecb escreveu:09. De quantos modos pode-se distribuir aleatoriamente um grupo de 5 fichas a um jogador, sendo que três delas estejam marcadas com o número 8 e as demais com números iguais?
a)48 b)96 c)192 d)288 e)570
No jogo, sempre teremos para cada número 4 fichas(4 fichas de n° 8, 4 fichas de n° 7, 4 fichas de número n° 6, e assim por diante). Temos então:

Nesse exemplo, de 1 a 3 são as possibilidades para sair 3 fichas de número 8, e de 4 a 5 para as demais serem iguais.
-
Fabiano Vieira
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Abr 16, 2012 23:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Sistema de Informação
- Andamento: cursando
por danielleecb » Ter Mai 15, 2012 12:14
Obrigada

-
danielleecb
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Seg Set 26, 2011 17:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Pré-vestibular
- Andamento: cursando
Voltar para Análise Combinatória
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (UCSAL-BA)num intendo essa questão
por natanskt » Sáb Dez 11, 2010 21:12
- 1 Respostas
- 2503 Exibições
- Última mensagem por DanielFerreira

Sáb Mar 03, 2012 23:11
Binômio de Newton
-
- (UCSAL) Funções
por 13run0 » Dom Mai 30, 2010 20:36
- 2 Respostas
- 1494 Exibições
- Última mensagem por 13run0

Dom Mai 30, 2010 22:36
Funções
-
- (UCSAL) Função do 1º Grau
por 13run0 » Dom Mai 30, 2010 22:46
- 4 Respostas
- 2733 Exibições
- Última mensagem por 13run0

Ter Jun 01, 2010 23:52
Funções
-
- (UCSal-BA) BINOMIO DE NEWTON
por natanskt » Seg Dez 06, 2010 21:56
- 1 Respostas
- 1952 Exibições
- Última mensagem por alexandre32100

Ter Dez 07, 2010 00:21
Binômio de Newton
-
- probabilidade combinatoria
por silvia fillet » Dom Mai 20, 2012 12:44
- 1 Respostas
- 1694 Exibições
- Última mensagem por afernando

Ter Mai 22, 2012 11:15
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.