• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Análise combinatória. Quantas são as possibilidades?

Análise combinatória. Quantas são as possibilidades?

Mensagempor natomi » Qui Mar 20, 2014 15:24

Foram construídas quatro casas em quatro lotes consecutivos de uma rua. Para a pintura externa das casas dipões-se de quatro cores diferentes. Sabendo que cada casa deve ser pintada de uma só cor e que casas vizinhas não podem ter cores iguais, podemos ter x modos diferentes de fazer a pintura desse conjunto de casas. O valor de x é:
a) 256
b) 128
c) 144
d) 108
RESPOSTA: ALTERNATIVA "D".
Eu tentei bastante, mas não consegui chegar ao resultado. Ficaria muito grato a todos que tentarem :)
natomi
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mar 20, 2014 14:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Análise combinatória. Quantas são as possibilidades?

Mensagempor Pessoa Estranha » Sáb Mar 22, 2014 15:15

Observe que podemos ter o seguinte raciocínio:

Vamos considerar quatro casas, uma do lado da outra (consecutivas), A, B, C e D. Notemos que para a primeira casa, A, temos 4 opções de tinta. Por outro lado, uma vez escolhida uma cor para A e, como não podemos ter casas consecutivas da mesma cor, então só restam 3 opções de tinta para a segunda casa, B. Do mesmo modo, não podemos escolher a mesma cor de tinta para as casas B e C. Daí, teríamos apenas 2 opções para a terceira casa, C. Porém, note que, neste caso, podemos usar a cor de tinta usada em A, pois A e C não são casas consecutivas. Logo, para a casa C temos 3 opções de tinta. Aplicando o mesmo raciocínio, temos 3 opções de tinta para a quarta casa, D. Assim, pelos resultados da Análise Combinatória, temos: 4.3.3.3 = 12.9 = 108.

Espero ter ajudado um pouco.... :y:
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.